“Vulnerable” plaques are atherosclerotic plaques that have a high likelihood to cause thrombotic complications, such as myocardial infarction or stroke. Plaques that tend to progress rapidly are also considered to be vulnerable. Besides luminal stenosis, plaque composition and morphology are key determinants of the likelihood that a plaque will cause cardiovascular events. Noninvasive magnetic resonance (MR) imaging has great potential to enable characterization of atherosclerotic plaque composition and morphology and thus to help assess plaque vulnerability. A classification for clinical, as well as pathologic, evaluation of vulnerable plaques was recently put forward in which five major and five minor criteria to define vulnerable plaques were proposed. The purpose of this review is to summarize the status of MR imaging with regard to depiction of the criteria that define vulnerable plaques by using existing MR techniques. The use of MR imaging in animal models and in human disease in various vascular beds, particularly the carotid arteries, is presented.

© RSNA, 2007
Complications of cardiovascular disease, including stroke, myocardial infarction, and sudden cardiac death, are the most common causes of death in the world (1). Atherosclerotic disease accounts for approximately 25% of ischemic strokes (2) and for the majority of myocardial infarctions and sudden cardiac deaths (3,4). Despite major advances in the treatment of atherosclerosis, a larger percentage of individuals with the disease who are apparently healthy die without prior symptoms (3). The challenge for screening and diagnostic methods is to identify patients at high risk who have lesions that are vulnerable to thrombosis, so-called vulnerable plaques, before the event occurs. To tailor and improve treatment strategies, these screening and diagnostic methods must be able to help determine the patient-specific risk of experiencing a cardiovascular event.

Imaging methods have the potential to not only be used as a screening tool for the presence of atherosclerosis but also to help distinguish stable from vulnerable plaques and ultimately to distinguish patients with low versus those with high risk of cardiovascular complications. Methods commonly used in atherosclerosis imaging include B-mode ultrasonography (US), intravascular US, conventional angiography, computed tomography (CT), and magnetic resonance (MR) imaging. Each of these imaging modalities has advantages and disadvantages, and all have been reviewed elsewhere (3,6). This article will focus on the particular potential of MR imaging to depict the key features of the vulnerable plaque. MR imaging is well suited for this role because it is noninvasive, does not involve ionizing radiation, enables visualization of the vessel lumen and wall (7,8), and can be repeated serially to track progression or regression. Furthermore, the excellent soft-tissue contrast provided by MR imaging allows evaluation of compositional and morphologic features of atherosclerotic plaques (9–15). This information is crucial because, besides luminal stenosis, plaque composition and morphology are key determinants of a plaque’s vulnerability with regard to causing cardiovascular events (3,4).

Authors of several review articles (7,8,16) have described in detail the technical aspects of the MR imaging characterization of human atherosclerotic plaque, including hardware considerations, imaging sequences, and imaging protocols. Results of the accuracy of MR imaging, compared with histologic findings, for measurements of plaque burden, tissue characterization, and fibrous cap status have also been reported (7,8,16). Choudhry et al (7) focused on present and future MR applications for the characterization of atherosclerotic plaques, including real-time vascular intervention, new contrast agents, and molecular imaging.

The present review is a continuation of previous review articles (8,16) and will focus on the current status of MR as a diagnostic imaging method to help identify the features of vulnerable plaques. The structure of this article is based on two recently published consensus documents (3,4) by a group of experienced researchers in atherosclerosis, including pathologists, clinicians, molecular biologists, and imaging scientists, in which the key features of the vulnerable plaque were defined. The authors of those documents argue that knowledge of luminal diameter is not sufficient to determine the vulnerability of an atherosclerotic lesion, and they propose five major and five minor criteria for the detection of vulnerable plaques. These plaque features were based on studies of coronary arteries and included a thin cap with a large lipid-necrotic core, active inflammation, a fissured plaque, stenosis greater than 90%, endothelial denudation with or without superficial platelet aggregation and fibrin deposition, endothelial dysfunction, calcified nodules, intraplaque hemorrhage, glistening yellow plaques (seen at angioscopy), and outward remodeling (see Table 1).

In this review, we will discuss the role of MR imaging in the identification of each of the features that define the vulnerable plaque, as proposed in the consensus documents (3,4).

Essentials

- The challenge for imaging methods is to enable identification of patients with high-risk lesions that are vulnerable to thrombosis, so-called vulnerable plaques, before the occurrence of cardiovascular complications.
- Noninvasive MR imaging has great potential to help characterize atherosclerotic plaque composition and morphology and thus to enable assessment of plaque vulnerability.
- Serial MR imaging of atherosclerotic plaques can provide useful insights on the natural history of vulnerable plaques and might be useful in identifying plaques that are progressing toward a vulnerable state.
- A recent prospective study demonstrated that certain vulnerable plaque features identified on MR images are associated with the occurrence of subsequent cerebrovascular events.
- Most of the plaque imaging data are based on larger vessels, such as the carotid arteries, and further advances in temporal and spatial resolution are needed for coronary plaque imaging.

Major Criteria

Thin Cap with Large Lipid-Necrotic Core

Virmani et al (17) defined the fibrous cap as a distinct layer of connective tissue completely covering the lipid-necrotic core. The lipid-necrotic core, which is frequently surrounded by macrophages, consists of large amounts of extracellular lipid, cholesterol crystals, and necrotic debris (17,18). Lesions
with a large lipid-necrotic core and a thin fibrous cap are considered to be most likely to rupture (19).

MR imaging is able to help characterize all major plaque components, including the lipid-necrotic core, by depicting particular combinations of signal intensities of each component on images obtained with different contrast weightings (see Table 2 for details). Initial experiments involving ex vivo imaging of endarterectomy specimens by using T1-, T2-, and intermediate-weighted imaging demonstrated that tissue components, including the lipid-necrotic core, hemorrhage, and calcification, could be detected with sensitivities and specificities ranging from 84% to 100% (12). Translation of these findings to in vivo imaging showed that the lipid-necrotic core and intraplaque hemorrhage could be identified with a sensitivity of 85% and a specificity of 92% (20). The ability of MR imaging to demonstrate plaque composition in vivo enables classification of human carotid atherosclerotic plaque, according to criteria developed by the American Heart Association. Cai et al (14) showed that in vivo MR imaging can help identify sections that have either a lesion with a confluent extracellular lipid-necrotic core (American Heart Association type IV lesion) or a lipid-necrotic core covered by a fibrous cap (type V lesion), with a sensitivity of 84% and a specificity of 90%.

While initial studies showed that MR imaging is able to depict the lipid-necrotic core, recent reports have focused on quantifying it. In an ex vivo MR imaging study of carotid endarterectomy specimens by Clarke et al (10), who used diffusion-weighted imaging in addition to T1-, intermediate-, and T2-weighted imaging, pixels were classified into different plaque components and were then compared with histologic specimens. On the basis of this classification, the sensitivity and specificity for necrotic tissue were 83.9% and 75%, respectively. Quantification of the lipid-necrotic core was recently translated to in vivo plaque imaging by using TOF and T1-, T2-, and intermediate-weighted sequences (9). In a study with 40 subjects, a radiologist and a pathologist manually identified the major components of carotid atherosclerotic plaque on MR images and serially sectioned carotid endarterectomy specimens, respectively (Fig 1). MR measurements of the lipid-necrotic core did not differ significantly from findings on histologic specimens (23.7% vs 20.3%; P = .1), and a strong correlation between MR and histologic area measurements was found (r = 0.75; P < .001) (9).

Comparison of T1-weighted images obtained before and after contrast material enhancement may improve the accuracy of MR for differentiating the lipid-necrotic core from surrounding fibrous tissue. The lipid-necrotic core shows little if any enhancement on postcontrast T1-weighted images, and differentiation from the surrounding enhancing fibrous tissue is thereby facilitated (21). Using pre- and postcontrast T1-weighted images, Cai et al (22) showed that the lipid-necrotic core, measured as proportion of the vessel wall, was similar on MR images and histologic specimens, with values of 30.1% ± 12.5 (standard deviation) and 32.7% ± 12.3, respectively. Furthermore, area measurements were strongly correlated (r = 0.85; P < .001).

The ability of MR imaging to help determine the status and thickness of the fibrous cap will be discussed in the following section.

Fissured Plaque

Virmani et al (17) described plaque rupture as an area of fibrous cap disruption whereby the overlying thrombus is in continuity with the underlying lipid-necrotic core. Typically, these lesions have a large lipid-necrotic core and a disrupted fibrous cap infiltrated by macrophages and lymphocytes; smooth muscle cell content within the fibrous cap at the rupture site may be sparse (17).

Hatsukami et al (15) reported the use of a three-dimensional TOF bright-
blood imaging technique (multiple overlapping thin slab angiography, or MOTSA [23]) to help identify a ruptured fibrous cap in atherosclerotic human carotid arteries in vivo. By using preoperative images of 22 consecutive endarterectomy patients, the in vivo state of the fibrous cap was characterized on the basis of its appearance on MR images as being intact and thick. A high level of agreement was found on the basis of its appearance on preoperative images of 22 consecutive human carotid arteries in vivo. By using MOTSA [23] to help identify a ruptured fibrous cap in atherosclerotic human carotid arteries in vivo, Trivedi et al (25) used a short-tau inversion-recovery sequence to quantify the fibrous cap and lipid-necrotic core of 25 recently symptomatic patients and correlated the results with the excised carotid endarterectomy specimens. The authors showed good agreement between MR and histologic quantifications of both the fibrous cap and the lipid-necrotic core content, with good interobserver agreement (intraclass correlation coefficients of 0.88–0.94) (25). Kramer et al (26) studied aortic atherosclerotic plaques in 23 patients with abdominal aortic aneurysm by using T1- and T2-weighted black-blood spin-echo sequences and gadopentetate dimeglumine–enhanced T1-weighted images. The authors found that contrast enhancement improved the delineation of the fibrous cap, which was found to be hyperintense relative to the lipid-necrotic core on T2-weighted images.

Table 2

| MR Parameters in Selected Studies |
|---|---|--|--|
| **Setting** | **Magnet (T)** | **Contrast Weighting** | **Contrast Agent** |
| Human carotid (13) | 1.5 | Dual-echo T2 (R-R interval/20, 55), T1 (500/18) | None |
| Ex vivo human carotid (12) | 9.4 | Intermediate to T2 (1000–2000/13–50), T1 (300–700/13) | None |
| Human carotid (15) | 1.5 | 3D multiple overlapping thin-slab MR angiography | None |
| Dogs (42) | 1.5 | 3D T1 (24/8.1), 3D phase-contrast MR angiography (15/5.3) | Fibrin-targeted nanoparticle |
| Rabbit aorta (54) | 1.5 | 3D MR angiography (6.7/1.6) | USPIOs |
| Human coronary arteries (62) | 1.5 | 3D MR angiography (2.4/8.8) | None |
| In vitro human coronary (11) | 2.0 | T2 (2000/50) | None |
| Human coronary arteries (103) | 1.5 | 3D black-blood spiral acquisition (30/2) | None |
| Swine carotid (37) | 1.5 | T1 (700/11), T2 (2000/42) | None |
| Human carotid and aorta (101) | 1.5 | Intermediate (2 R-R intervals/12), T2 (2 R-R intervals/45) | None |
| Ex vivo human carotid (10) | 1.5 | T1, T2, intermediate, diffusion-weighted, fast imaging employing steady state (see reference 10 for details) | None |
| Rabbit aorta (56) | 1.5 | T1 (380/11) | USPIOs |
| Human carotid (55) | 1.5 | T1 (41–44/8.0–9.2), T2* (R-R interval/20), intermediate (2–3 R-R intervals/20) | USPIOs |
| Human carotid (86) | 1.5 | T1 turbo field echo (900/10.3), T1 turbo field echo (570/14) | None |
| Human aorta (27) | 1.5 | T1 breath hold (R-R interval/32), T2 breath hold (2 R-R intervals/80) | None |
| Human coronary arteries (43) | 1.5 | 3D turbo field echo (3.8/1.9), 3D inversion recovery MR angiography (4.7/1, inversion time, 4 msec) | Fibrin-targeted agent |
| Human coronary arteries (64) | 1.5 | Whole-heart 3D steady-state free precession MR angiography (4.7–31/1.7–2.3) | None |
| Human carotid (9) | 1.5 | T1 (800/9.3–11), intermediate to T2 (3–4 R-R intervals/10–70), 3D TOF (23/3.5) | None |
| Human aorta (104) | 1.5 | Intermediate (2 R-R intervals/10), T2 (2 R-R intervals/60) | None |
| Human carotid (49) | 1.5 | Two-dimensional T1 spoiled gradient-recalled echo (100/3.5) | Gadolinium chelate |
| Human carotid (22) | 1.5 | Enhanced and unenhanced T1 (800/9.3–11) | Gadolinium chelate |

* Except where otherwise noted, studies were in vivo. Number in parentheses is the reference number.

† Data in parentheses are repetition time msec/echo time msec. TOF = time of flight, 3D = three-dimensional.

‡ USPIO = ultrasmall paramagnetic iron oxide.
the fibrous cap from the lipid-necrotic core, with a contrast-to-noise ratio as good as or better than that of T2-weighted MR images but with approximately twice the signal-to-noise ratio (postcontrast images, 36.6 ± 3.6; T2-weighted images, 17.5 ± 2.1; P < .001). Cai et al (22) used unenhanced T1-weighted and contrast-enhanced T1-weighted images to measure the intact fibrous cap. The authors showed moderate to good correlation between findings from carotid MR imaging and the excised histologic specimen for maximal thickness (r = 0.78, P < .001), length (r = 0.73, P < .001), and area (r = 0.90, P < .001) of intact fibrous cap.

Yuan et al (28) used three-dimensional TOF and intermediate-, T1-, and T2-weighted images in 28 symptomatic and 25 asymptomatic subjects to determine whether fibrous cap thinning or rupture, identified on MR images, is associated with a history of recent transient ischemic attack or stroke. Compared with patients with a thick fibrous cap, patients with a ruptured cap were 23 times more likely to have had a recent transient ischemic attack or stroke (95% confidence interval: 3, 210) (28).

Endothelial Denudation with Superficial Platelet Aggregation and Fibrin Deposition

Atherosclerotic plaques with endothelial denudation are characterized either by superficial erosion and platelet aggregation or by fibrin deposition (17). Platelet aggregation may lead to luminal occlusion and acute cardiovascular events, or platelets may layer and organize, further contributing to plaque progression (17,29). In this section, we will discuss the ability of MR imaging to help identify platelet aggregation or fibrin deposition. (The ability of MR to help evaluate endothelial denudation or dysfunction will be discussed in the section Endothelial Dysfunction.)

The detection of thrombus and the determination of its age on MR images are mainly related to the physical characteristics and visual appearance of thrombus (30), which originate from the cross linking of the fibrin strands, thrombus organization (31), the structure of hemoglobin, and the oxidation state (32). Toussaint et al (31) used the water diffusion properties of atherothrombotic tissue to distinguish fresh thrombi from 1-week-old thrombi and occluding old thrombi on MR images. Recently, a similar technique (diffusion-weighted MR) was successfully applied for the detection of cerebral venous thrombosis (33) and dural sinus thrombosis (34). Gradient-recalled-echo MR imaging is frequently applied in the study of cerebral hematoma and venous thrombosis (35).

Corti et al (36) demonstrated the potential of black-blood MR imaging (T1 and T2-weighted MR) for help in the detection of thrombus and thrombus age in pigs. Thrombi induced in the carotid arteries were monitored at 6 hours; 1 day; and 1, 2, 3, 6, and 9 weeks. Temporal changes due to thrombus organization were clearly depicted on T1- and T2-weighted MR images and were expressed as alterations in signal intensity relative to the signal intensity of adjacent muscle. Authors of another study (37) showed the potential of gadolinium-enhanced MR imaging to help discriminate different types of intracardiac clots (subacute and organized) in the cardiac chambers in 15 patients scheduled for cardiotomy.

Kampschulte et al (38) used an in vivo multisequence protocol (TOF and intermediate-, T1-, and T2-weighted imaging) in 26 patients scheduled for carotid endarterectomy, to differentiate between intraplaque hemorrhage (Fig 3a) and juxtaluminal hemorrhage/thrombus (Fig 3b). For locations in which MR and histologic findings were in agreement regarding the presence of any type of hemorrhage, MR imaging enabled differentiation of juxtaluminal hemorrhage and thrombus from intraplaque hemorrhage with an accuracy of 96%, with histologic findings as the reference standard. This technique was used to evaluate whether in vivo MR imaging can depict differences between symptomatic and asymptomatic carotid atherosclerotic plaques in the same patient at the same point in time (39). Compared with asymptomatic plaques, plaques associated with neurologic symptoms were associated with a higher occurrence of juxtaluminal hemorrhage and thrombus (61% vs 26%; P = .039), whereas intraplaque hemorrhage was common in both symptom-
atic and asymptomatic plaques (91% vs 83%; \(P = .5\)).

New targeted contrast agents to enable detection of local small thrombi are under development (30). Fibrin can be identified by using lipid-encapsulated perfluorocarbon paramagnetic nanoparticles in vitro (40,41) and in vivo (41). Botnar et al (42) used a fibrin-binding gadolinium-labeled peptide in an experimental rabbit model of plaque rupture and thrombosis to detect acute and subacute thrombosis. Similar agents have been successfully used in swine to detect coronary thrombus and in-stent thrombosis (43), as well as pulmonary emboli (44).

Active Inflammation

Inflammation plays a critical role in plaque initiation, progression, and disruption and represents an emerging target in the treatment of atherosclerosis (45). Systemic indicators of inflammation such as C-reactive protein and interleukin-6 titers can be easily obtained by testing blood samples, and it has been shown that a variety of circulating inflammatory markers are associated with the risk of coronary artery disease (45). However, it appears unlikely that C-reactive protein or any of the other markers actually causes the disease (45). Instead, they reflect the local inflammatory process in the artery and perhaps other tissues (eg, adipose tissue) (45). It is this local inflammatory process that can be assessed by noninvasive imaging methods.

Plaques with active inflammation may be identified by the presence of extensive macrophage accumulation (46), and recent investigations with MR imaging have shown an association between contrast enhancement and the degree of macrophage infiltration of plaque (47,48). Lin et al (49) were, to our knowledge, the first to use gadolinium-based contrast agents in atherosclerotic plaque imaging in an animal model, and they demonstrated strong contrast enhancement of the vessel wall. Lin et al concluded that the contrast enhancement of the vessel wall that they observed was caused by an increased vascular supply associated with thrombosis and neointimal thickening. Aoki et al (50) used dynamic MR imaging to correlate carotid wall enhancement changes with pathologic conditions. The dominant feature they noted was a bright outer rim of the vessel wall, which was attributed to growth of the vasa vasorum in the adventitia.
Yuan et al (21) used contrast-enhanced T1-weighted images and found the greatest enhancement to be associated with areas of dense neovascularization, which are thought to contribute to plaque destabilization (51).

An advantage of using contrast agents that is only beginning to be explored in plaque imaging is the ability to extract quantitative measurements of enhancement. To date, such studies have focused on the use of kinetic modeling and dynamic contrast-enhanced MR imaging to measure the rate of enhancement. Kerwin et al have identified a fast enhancement component, v_e, associated with plaque neovascularature (47) and a slower enhancement component, K^trans (Fig 4), associated with permeability (48). It has recently been demonstrated (48) that these dynamic enhancement parameters are strongly associated with macrophage density in advanced carotid plaque (Fig 4). Macrophage density was estimated from histologic specimens by using software (Image-Pro Plus; Media Cybernetics, Bethesda, Md) to measure the total area that stained positive for macrophages and normalizing according to the plaque cross-sectional area (48).

An alternative method for imaging macrophage content is to use ultra-small superparamagnetic iron oxide (USPIO) particles that are suspended in solution and injected into patients. USPIOs alter MR reaction times, and the propensity of macrophages to phagocytose the USPIOs results in USPIOs being a macrophage-specific agent (52). If sufficient time for macrophage uptake is allowed—at least 24 hours—$T2^*$-weighted images show substantial signal intensity reduction due to the susceptibility effects of USPIOs (53). In experiments with human carotid endarterectomy subjects, Kooi et al (54) showed that macrophages within plaques were positive for iron at histologic and electron microscopy evaluations of endarterectomy specimens. On MR images of corresponding locations, substantial signal intensity reductions were observed.

\(\alpha_v\beta_3\)-Integrin is a molecule that is believed to be associated with angiogenesis and inflammation. An \(\alpha_v\beta_3\)-integrin–targeted agent was shown to yield greater enhancement in cholesterol-fed rabbits than in controls, and cholesterol-fed rabbits also exhibited increased development of the adventitial vasa vasorum (55).

Severe Stenosis

Arterial stenosis is an abnormal narrowing of a blood vessel that reduces blood flow in the lumen, which may cause ischemic cardiovascular complications. On the surface of atherosclerotic plaques associated with severe stenosis, shear stress imposes a risk of thrombosis and sudden occlusion (3). Therefore, a stenotic plaque may be a vulnerable plaque regardless of presence or absence of ischemia (3). Moreover, a stenotic plaque may indicate the presence of many nonstenotic or less-stenotic plaques that could be vulnerable to rupture and thrombosis (56,57).

MR angiography of the carotid arteries has gone through a long evolutionary period to become a routine imaging modality for evaluation of stenosis at many centers (58,59). In carotid arteries, the ability of MR angiography to demonstrate less than 70% versus 70%–99% stenosis is much better than that of duplex US (60). Also, MR angiography is a sensitive and specific test when digital subtraction angiography is used as the reference standard (61).

However, noninvasive imaging of the coronary arteries is a formidable task: The small diameter of the coronary arteries (approximately 2–4 mm), their tortuous course, their close anatomic relationship to the coronary veins and cardiac chambers, and, finally, their continuous rapid motion due to cardiac contractions and respiratory excursions create obstacles that are difficult to overcome. Kim et al (60) used a free-breathing, navigator-gated, three-dimensional MR technique to depict the coronary arteries and help detect coronary stenoses in a series of 109 patients (Fig 5). In segments that could be evaluated, 78 of 94 stenoses of more than 50% were detected by using MR angiography, with conventional coronary angiography as the reference standard. In a separate analysis, the authors calculated a sensitivity of 100% for the identification of either left main coronary artery disease or three-vessel disease, conditions in which revascularization is of particular therapeutic value. However, current spatial (approximately \(1 \times 1 \times 2 \text{ mm}\)) and temporal (approximately 60–125-msec) resolutions permit imaging only of the proximal two-thirds of the coronary arteries, exclusive of the major side branches (62). Though coronary MR angiography is promising, further development is needed before it can enter routine clinical use (62).

Recently, alternative acquisition techniques, such as steady-state free precession (64), have been proposed (63) that establish different contrast behavior and use different k-space acquisition schemes, such as spiral (65) or radial (also known as projection-reconstruction) (66) readout patterns. Furthermore, a whole-heart steady-state free-precession coronary MR angiography technique has been proposed (63) that improves visible vessel length and facilitates high-quality coronary MR angiography of the complete coronary tree in a single measurement. These newer sequences are reported to provide several advantages over the free-
breathing T2-prepared segmented gradient-recalled-echo sequence (67,68). The advantages include increases in signal-to-noise ratio, contrast-to-noise ratio, vessel sharpness, and coverage of vessel length, as well as reduction in acquisition time.

Traditionally, the degree of stenosis is assessed on a projection angiogram by using the North American Symptomatic Carotid Endarterectomy Trial (NASCET) criteria, the European Carotid Surgery Trial (ECST) criteria, or the so-called eyeballing method (69). While it has been demonstrated that the degree of ipsilateral carotid stenosis, as measured with the techniques used in the ECST and NASCET, clearly predict stroke risk (70,71), all of these techniques have sizable disagreements among repeated measurements for some vessels (68).

For evaluation of the degree of stenosis on projection angiograms, the minimum luminal diameter at a target site is determined. The projection image should be generated at an angle that allows measurement of the minimum luminal diameter; this dimension may not be measurable in cases of eccentric stenosis with images generated at suboptimal angles (72). In contrast, on cross-sectional images the minimum luminal diameter can be measured accurately without difficulty (72,73), and some investigators state that a reduction in cross-sectional area correlates better with the hemodynamic effect of stenosis than does a reduction in diameter (74). In the future, new computerized carotid stenosis measurement systems that measure the stenosis by using transverse MR angiographic images (75,76) have the potential to further reduce variability.

Minor Criteria

Superficial Calcified Nodule

The consensus documents (3,4) describe a type of plaque that has a calcified nodule within or very close to the fibrous cap, and this structure protrudes through and can rupture the cap (3). It has been shown in coronary arteries that the presence of calcified nodules is not necessarily associated with severe coronary calcification and a high calcium score (17).

In vivo MR imaging is able to depict overall plaque calcification with good sensitivity and specificity (9). Furthermore, a strong correlation between MR and histologic area measurements has been achieved ($r = 0.74, P < .001$) (9). However, juxtaluminal calcification can be more difficult to identify than calcification that is deeper within the plaque, because juxtaluminal calcification appears as a hypointense signal on TOF and T1-, intermediate-, and T2-weighted images and is not distinguishable from the lumen on black-blood T1-, intermediate-, and T2-weighted images. However, the addition of bright-blood TOF imaging facilitates identification of juxtaluminal calcification, in that it is
clearly distinguishable from the bright lumen on TOF images. Recent reports (20,38) have provided preliminary evidence that the combined use of black-blood and bright-blood images makes feasible the detection of calcified nodules and/or juxtaluminal calcification in the carotid arteries (Fig 6).

Glistening Yellow Plaques at Angioscopy

Yellow plaques, particularly glistening ones, may indicate a large lipid-necrotic core and a thin fibrous cap, suggesting a high risk of rupture. However, because plaques in different stages can be yellow and not all lipid-laden plaques are destined to rupture or undergo thrombosis, this criterion may lack sufficient specificity (77,78). Furthermore, this criterion is determined solely on the basis of angioscopic observations. Angioscopy is an intravascular imaging method that achieves high spatial resolution. However, the information is limited to the luminal surface, the technique is invasive and highly operator dependent, and it is currently not approved by the Food and Drug Administration for use in the United States. Obviously, MR images cannot depict the color of the plaque’s surface. However, as mentioned earlier in the section Thin Cap with Large Lipid-Necrotic Core, invivo MR imaging is able to depict lipid-necrotic cores and the status of the fibrous cap, both features of angioscopically glistening yellow plaques.

Intraplaque Hemorrhage

Extravasation of red blood cells or iron accumulation in plaque may represent plaque instability and promote plaque progression (3,79). The mechanism that results in intraplaque hemorrhage is not completely understood: Constantines (80) and others (81) have suggested that hemorrhage into a plaque occurs from cracks or fissures that originate at the luminal surface, while Paterson (82) has proposed that intraplaque hemorrhage is secondary to rupture of the vasa vasorum, a common feature of advanced lesions with plaque rupture and luminal thrombi.

In vivo MR imaging is able to depict carotid intraplaque hemorrhage (Fig 3a) with good sensitivity and moderate to good specificity (13,20,83–85). Furthermore it has been shown that MR imaging can help differentiate between hemorrhages of different ages (83) with the use of modified criteria for cerebral hemorrhage. Moody et al (84) showed that T1-weighted images of the carotid arteries can be used to accurately identify histologically confirmed complicated plaque with hemorrhage or thrombus.

Though intraplaque hemorrhage is listed as a minor criterion, recent articles (79,86,87) suggest a greater role of hemorrhage in plaque destabilization than was previously thought. Results of a study of 24 patients (79) who had died suddenly of coronary causes suggested that hemorrhage contributed to the deposition of free cholesterol, infiltration by macrophages, and enlargement of the necrotic core, thereby representing a potent atherogenic stimulus. Consistent with this notion, a recent prospective longitudinal MR investigation (87) of 31 patients showed that hemorrhage into a carotid plaque accelerated plaque progression in a period of 18 months. The percent change in wall volume (6.8% vs −0.15%, \(P = .009 \)) and lipid-necrotic core volume (28.4% vs −5.2%, \(P = .001 \)) was significantly higher in the hemorrhage group than in the control group (Fig 7). Further, patients with intraplaque hemorrhage at baseline showed a far greater susceptibility to repeat plaque hemorrhages (87). Therefore, intraplaque hemorrhage may represent a critical transition, promoting the conversion of a stable to an unstable plaque phenotype (86).

Endothelial Dysfunction

Studies have shown that endothelial dysfunction is associated with coronary heart disease and stroke (88,89). Furthermore, vulnerable plaques with active inflammation and oxidative stress are likely to be associated with impaired endothelial function (3).

Although in vivo MR imaging is not able to depict the endothelium directly, MR and a number of other imaging modalities can be used to measure arterial stiffness noninvasively (90). Arterial stiffness and endothelial dysfunction commonly coexist in patients at increased risk of cardiovascular disease (90), for example in patients with dia-
transfer constant. Endothelial function is to measure the vascular function in young smokers. Mediated dilatation showed global im-
sessed, pulse wave velocity and flow-
central vascular distensibility was as-
that MR imaging offers insights not oth-
erwise possible (90) with regard to de-
scribing an age-related increase in pulse
wave velocity in the proximal aorta rel-
ations have been performed in this field (90). This is due to the large number of
other imaging modalities, such as Doppler US or applanation tonometry, which
also allow evaluation of arterial stiffness (90). However, a recent study showed that MR imaging offers insights not oth-
erwise possible (90) with regard to de-
scribing an age-related increase in pulse
wave velocity in the proximal aorta rel-
that in the distal aorta (97). In another MR investigation (95) in which
central vascular distensibility was as-
sessed, pulse wave velocity and flow-
mediated dilatation showed global im-
pairment of brachial, carotid, and aortic
vascular function in young smokers.

Another indirect MR measure of the endothelial function is to measure the
transfer constant K^{trans} by using dy-
amic contrast-enhanced MR imaging (48). This parameter quantifies the in-
creased vascularity, permeability, and extracellular water content typically as-
associated with the inflammatory re-

Outward (Positive) Remodeling

Many nonstenotic lesions undergo “expansive,” “positive,” or “outward” re-
modeling: namely, compensatory enlarge-
ment that permits growth in over-
all plaque size without reduction in luminal area. Several authors (98,99)
have suggested that such remodeling is a potential surrogate marker of plaque
vulnerability. MR imaging is ideally suited for serial and noninvasive assess-
ment of arterial remodeling, because MR provides information about the lu-
enal and arterial wall simultaneously.

Clinical trials of MR imaging to ex-
amine the results of statin therapy on
plaque progression or regression have demon-
strated a greater effect on vessel
wall area than on changes in lumen di-
mensions, which suggests a remodeling process on the vessel wall. Corti et al
(100) performed serial carotid and aortic MR imaging in patients treated with
simvastatin and found that vessel wall
area and vessel wall thickness de-
creased by 18% and 19%, respectively,
in carotid lesions and by 16% and 16%,
respectively, in thoracic lesions at 24
months (Fig 8). Lumen area increased
by only 5% after 24 months of statin
therapy. Recently, Yonemura et al
(101) reported the results of a prospec-
tive, randomized, open-label trial to elu-
cidate the effects on atherosclerotic
plaques in the thoracic aorta of atorva-
statin dosages of 20 mg/d versus 5
mg/d. Their results indicated that the 20
mg/d dose reduced maximal vessel
wall thickness and vessel wall area of tho-
racic aortic plaques (−12% and −18%,
respectively; $P < .001$), whereas 5 mg/d
did not (±1% and +4%, respectively).
Lumen area increased 5% in the high-
dose group and 0% in the low-dose
group.

In a study that included six healthy
subjects and six subjects with nonsignifi-
cant coronary artery disease (10%–50%
diameter reduction on conventional an-
giogram), Kim et al (102) introduced a
noninvasive MR imaging method to dem-
strate expansive remodeling in coro-
nary arteries. Free-breathing three-di-

dimensional black-blood coronary MR im-
aging with isotropic resolution depicted
an increased coronary vessel wall thick-
ness with preservation of lumen size in
patients with nonsignificant coronary ar-
tery disease, consistent with expansive
arterial remodeling. A recent study (103)
in 15 volunteers demonstrated the feasi-
ibility of coronary wall MR imaging with
free-breathing and breath-hold two-di-

dimensional black-blood spin-echo
sequences at 3 T. Although measure-
ments of coronary wall thickness and
area and lumen diameter and area were
consistent with previous MR measure-
ments at 1.5 T, the authors concluded that
further improvement in resolution and
image quality is required to enable
detection and characterization of coro-
nary plaques (103).

Summary, Clinical Perspectives, and
Conclusion

Noninvasive MR imaging has the poten-
tial to help identify, directly or indi-
rectly, most of the consensus criteria for the identification of vulnerable
plaque in larger vessels by using a vari-

Figure 7

Representative transverse T1-weighted MR images (800/9.3) of the progression of atherosclerosis with intraplaque hemorrhage. Right carotid artery was imaged (a) at baseline and (b) 18 months later. Lumen area (+) decreased and wall area (arrowheads) increased in each section on b. Bif = bifurcation, CCA = common carotid artery, ECA = external carotid artery, ICA = internal carotid artery. (Reprinted, with permis-
sion, from reference 87.)
or regression. It is important to note serial monitoring of disease progression for screening for atherosclerosis and for *in vivo* MR imaging has potential as a tool for vascular complications. Furthermore, in *versus* those with high risk of cardiovascular events occurred. Cox regression analysis indicated that plaques with intraplaque hemorrhage (hazard ratio: 4.7; 95% confidence interval: 1.6, 14.0; \(P = .004 \)), larger mean intraplaque hemorrhage area (hazard ratio for 10-mm² increase: 2.4; 95% confidence interval: 1.4, 4.1; \(P = .008 \)), thin or ruptured fibrous cap (hazard ratio: 9.4; 95% confidence interval: 2.1, 42.1; \(P < .001 \)), larger maximum percentage lipid-rich-to-necrotic core ratio (hazard ratio for 10% increase: 1.4; 95% confidence interval, 1.1, 1.9; \(P = .01 \)), and maximum wall thickness (hazard ratio for 1-mm increase: 1.6; 95% confidence interval, 1.1, 2.1; \(P = .007 \)) were associated with the cerebrovascular events.

Although initial findings of this prospective study (107) were promising, several challenges remain. Most of the in vivo MR studies in humans cited in this article were based on analysis of data from relatively large human vessels, such as the carotid arteries. To achieve similar results in the much smaller coronary arteries, substantial advances in temporal and spatial resolution are necessary. This may be accomplished with improvements in pulse se-

Figure 8: Bar graphs show changes in atherosclerotic vessel wall dimensions (in square millimeters) after statin treatment: mean vessel wall area (top) and mean lumen area (bottom) at baseline (BL) and after 6, 12, 18, and 24 months of simvastatin treatment for aorta (left) and carotid arteries (right). ANOVA = analysis of variance, error bars = standard error of the mean. (Reprinted, with permission, from reference 100.)

The ability to distinguish stable from vulnerable plaques may ultimately permit identification of patients with low versus those with high risk of cardiovascular complications. Furthermore, in vivo MR imaging has potential as a tool for screening for atherosclerosis and for serial monitoring of disease progression or regression. It is important to note that the consensus document (3,4) criteria that define the vulnerable plaque are based on histologic studies of culprit plaques. Histologic examination can only capture information regarding the plaque from a single time point. Thus, little is known about the evolution of vulnerable plaques, and noninvasive serial MR imaging of such plaques can, therefore, provide useful insights into their natural history and might help to identify plaques that are on a trajectory of evolution toward a vulnerable state.

In a recent prospective in vivo MR imaging study (107) that used T1-, T2-, and intermediate-weighted images and TOF images, the authors investigated the association between carotid plaque characteristics and subsequent ischemic cerebrovascular events in 154 subjects who initially had an asymptomatic 50%-79% carotid stenosis seen at duplex US. During a mean follow-up of 38.2 months, 12 carotid cerebrovascular events occurred. Cox regression analysis indicated that plaques with intraplaque hemorrhage (hazard ratio: 4.7; 95% confidence interval: 1.6, 14.0; \(P = .004 \)), larger mean intraplaque hemorrhage area (hazard ratio for 10-mm² increase: 2.4; 95% confidence interval: 1.4, 4.1; \(P = .008 \)), thin or ruptured fibrous cap (hazard ratio: 9.4; 95% confidence interval: 2.1, 42.1; \(P < .001 \)), larger maximum percentage lipid-rich-to-necrotic core ratio (hazard ratio for 10% increase: 1.4; 95% confidence interval, 1.1, 1.9; \(P = .01 \)), and maximum wall thickness (hazard ratio for 1-mm increase: 1.6; 95% confidence interval, 1.1, 2.1; \(P = .007 \)) were associated with the cerebrovascular events.

Although initial findings of this prospective study (107) were promising, several challenges remain. Most of the in vivo MR studies in humans cited in this article were based on analysis of data from relatively large human vessels, such as the carotid arteries. To achieve similar results in the much smaller coronary arteries, substantial advances in temporal and spatial resolution are necessary. This may be accomplished with improvements in pulse se-
sequence design and MR hardware (eg, higher field strength, new coil designs). Therefore, prospective studies in large populations are needed to determine the predictive value of MR-based assessment of vulnerable plaque features for subsequent ischemic events.

Acknowledgment: We thank Andrew An Ho, MA, for editing this manuscript.

References

35. Taber KH, Hayman LA, Herrick RC, Kirk-

Young GR, Humphrey PB, Nixon TE, Smith ET. Variability in measurement of extracranial internal carotid artery stenosis as displayed by both digital subtraction and magnetic resonance angiography: an assessment of three caliper techniques and visual impression of stenosis. Stroke 1996;27:467–473.

North American Symptomatic Carotid Endarterectomy Trial. Methods, patient char-
