The goal of this review is to highlight how molecular imaging will impact the management and improved understanding of the major cardiovascular diseases that have substantial clinical impact and research interest. These topics include atherosclerosis, myocardial ischemia, myocardial viability, heart failure, gene therapy, and stem cell transplantation. Traditional methods of evaluation for these diseases will be presented first, followed by methods that incorporate conventional and molecular imaging approaches.

© RSNA, 2007
MOLECULAR IMAGING SERIES: Cardiovascular Molecular Imaging

Wu et al.

Molecular imaging is a rapidly advancing biomedical research and clinical discipline. Compared with traditional in vitro tissue culture and in vivo animal studies, molecular imaging allows noninvasive, quantitative, and repetitive imaging of targeted biological processes at both the cellular and subcellular levels within a living organism. This kind of imaging provides an extremely powerful technique with numerous applications, such as the monitoring of endogenous transcriptional regulation, analysis of gene transfer, tracking of tumor cell survival, screening for transgenic animal phenotypes, and expediting of drug discovery.

Although the primary focus tradition ly has been in the field of cancer biology, molecular imaging approaches have now been extended to several cardiovascular-related applications.

The goal of this review is to highlight how molecular imaging will impact the management and improved understanding of the major cardiovascular diseases that have substantial clinical impact and research interest. These topics include atherosclerosis, myocardial ischemia, myocardial viability, heart failure (HF), gene therapy, and stem cell transplantation. Traditional methods of evaluation for these diseases will be presented first, followed by methods that incorporate conventional and molecular imaging approaches. Conventional cardiovascular imaging focuses on obtaining anatomic, physiologic, or metabolic information and includes modalities such as echocardiography, magnetic resonance (MR) imaging, computed tomography (CT), single photon emission computed tomography (SPECT), and positron emission tomography (PET).

Although echocardiography, MR imaging, and CT typically are used to evaluate anatomic structures of the heart, they have limited capabilities in the assessment or visualization of physiologic and metabolic processes. Conversely, SPECT and PET can be used to evaluate physiologic and metabolic characteristics but are limited in their capability for visualization of anatomic structures. By using standard anatomic imaging modalities combined with molecular imaging technologies such as SPECT and PET, we now have the potential to detect disease processes at the anatomic, physiologic, metabolic, and molecular levels and, thereby, allow (a) earlier detection of diseases, (b) objective monitoring of therapies, and (c) better prognostication of disease progression.

Atherosclerosis

Atherosclerosis is a dynamic multifactorial disease of the arterial wall. Although it generally involves the entire vascular system, cardiovascular manifestations are found most frequently and ultimately result in clinically overt coronary artery disease (CAD). A variety of factors contribute to development and progression of atherosclerosis. Dysfunction of the endothelium, which maintains vascular homeostasis by regulating vascular tone, smooth muscle cell proliferation, and thrombogenicity, is thought to be the earliest step in the development of CAD. The endothelial dysfunction results in the imbalance of vascular regulatory mechanisms to cause damage to the arterial wall.

Inflammation, macrophage infiltration, lipid deposition, calcification, extracellular matrix digestion, oxidative stress, cell apoptosis, and thrombosis are among further molecular mechanisms that contribute to plaque development and progression.

In the past, invasive coronary angiography has been the only diagnostic procedure that could be used to identify coronary atherosclerosis. The reduction of the vessel lumen caused by stenosis is used as an indicator of the presence of plaques and allows assessment of the extent and severity of occlusive CAD. Advances in CT and MR imaging technology have led to the development of algorithms for noninvasive contrast material–enhanced angiography by using these techniques. These approaches are characterized by high negative predictive values, but their diagnostic accuracy, especially for the assessment of smaller distal parts of the coronary arterial tree, is still limited at present.

Although angiography still serves as a key test in the management of symptomatic CAD, several clinical observations have emphasized the need for a more detailed analysis of the structure and biology of atherosclerotic plaques. First, epidemiologic observations have shown that a large proportion of people who suffer a sudden cardiac event (acute ischemic syndrome or sudden cardiac death) have no prior symptoms. Second, it has been found that acute coronary syndromes often result from plaque rupture at sites with no or only modest luminal narrowing at angiography. Vascular remodeling, which consists of atherosclerosis-associated morphologic and biologic changes of the vessel wall without substantial stenosis, often has occurred at such sites. Therefore, there is considerable demand for diagnostic procedures that go beyond assessment of the vessel lumen to identify rupture-prone vulnerable plaques as the most frequent cause of sudden cardiac events.

As a consequence, several methods have been developed in recent years to provide detailed information about vessel wall and plaque morphology. Intravascular ultrasonography (US) is an invasive technique that allows assessment of vessel wall thickness and structure. In addition, optical coherence tomography has been introduced as another invasive technique that provides images of vessel wall morphology at almost histologic quality. Finally, MR imaging approaches also have been developed, and these approaches allow noninvasive characterization of the ves-
sel wall (12). Some studies have shown that CT angiography allows additional assessment of plaque attenuation (13). The goal of these techniques is to identify vascular remodeling and describe plaques with regard to specific criteria of vulnerability, such as a thin fibrous cap and a large lipid core.

At least as important as its morphology, however, is the biology of a plaque (Fig 1b). Inflammation is a key feature of active, rupture-prone plaques, which can be identified invasively by using thermography (14). Plaque inflammation also may be identified noninvasively by using nuclear imaging with fluorine 18 (18F) fluorodeoxyglucose (FDG) or other markers of inflammatory activity (15). Further molecular features of unstable plaques, which have been targeted by specific probes, are macrophage infiltration (16,17), proliferating smooth muscle cells (18), matrix metalloproteinase activation (19), apoptosis of macrophages and smooth muscle cells (20,21), oxidative stress (22), and proangiogenetic factors (23) (Table 1).

Most of these biologic imaging techniques are at present still limited to experimental settings, but the increasing number of upcoming approaches and of research groups active in the field will help for rapid future clinical establishment. Hybrid imaging systems such as PET/CT and SPECT/CT cameras are anticipated to contribute substantially to a breakthrough in clinical identification of vulnerable plaques, because these systems allow combined assessment of morphology and biology of vascular structures at sufficiently high spatial resolution (Fig 1c).

Myocardial Ischemia

As mentioned previously, atherosclerosis ultimately progresses to clinically overt CAD. In the treatment of clinical CAD, a paradigm change has occurred in recent years. It is increasingly emphasized that the decision for invasive work-up and intervention cannot be based on symptoms and morphologic detection of coronary stenoses alone. Functional tests allow accurate identification of the presence, extent, and severity of myocardial ischemia, which is closely correlated to patient outcome. At present, detection of myocardial ischemia thus serves as a gatekeeper to coronary angiography and guides the clinician to choose interventional or medical therapy on the basis of individual cardiovascular risk (Fig 2).

The clinical usefulness of myocardial perfusion scintigraphy for diagnostic and prognostic evaluation of patients with suspected or known CAD is sup-
ported by a large body of evidence. A normal myocardial perfusion scan can be used to rule out myocardial ischemia and is associated with a low cardiovascular event rate of less than 1% per year (24). Cardiac risk, and thus the benefit from invasive therapeutic strategies, increases in relation to the severity of myocardial ischemia and perfusion abnormalities (25,26). Noninvasive ischemia-guided strategies for diagnostic and therapeutic work-up of patients with CAD were shown to be cost effective in general (27). In addition, the importance of perfusion imaging for decision making has been demonstrated in specific situations, such as in acute coronary syndromes (28), after myocardial infarction (MI) (29), prior to noncardiac surgery, or in high-risk subgroups such as diabetic patients (30).

Nonnuclear imaging techniques for detection of myocardial ischemia are becoming increasingly available. These techniques have the advantage of no radiation exposure, but their diagnostic and prognostic usefulness is still less well established compared with perfusion scintigraphy. Echocardiography can be applied for detection of wall motion abnormalities during physical exercise (31) or dobutamine stimulation (32). Furthermore, contrast-enhanced echocardiography has been established for measuring perfusion with echogenic microbubbles (33). A promising approach to detection of ischemia is MR imaging. This technique is thought to be less dependent on patient conditions and observer experience. MR imaging can be effectively used for detection of ischemia-associated wall motion abnormalities during dobutamine stimulation (34) or for direct assessment of myocardial perfusion after a bolus injection of a gadolinium-based contrast agent at rest and during pharmacologic vasodilation (35). Although these nonnuclear methods are likely to grow in the future, it is thought that nuclear imaging will be pushed by the hybrid PET/CT and SPECT/CT cameras, which allow further refinement of functional cardiac assessment with measurement of myocardial perfusion, geometry, function, and coronary morphology within a single imaging session.

Assessment of ischemia by using measurement of perfusion and function will remain the method for stratification of patients with known CAD. Identification of ischemia-associated molecular alterations, however, may find a role in certain situations that are not yet possible through conventional assessment of perfusion and/or contractile function. Specific identification of myocardium that has previously been exposed to ischemia, but is now normally perfused, would be of considerable interest. An ischemic memory marker would allow identification of myocardium at risk in patients with acute coronary syndromes or extensive CAD. It may also provide insights into the clinical role of ischemic preconditioning, a cellular mechanism by which short episodes of ischemia and reperfusion result in an improved tolerance of prolonged ischemic episodes (36).

Annexin V is a protein that can be radiolabeled and that binds to phosphatidylserine, a molecule expressed on the cell surface during the early phase of apoptosis (programmed cell death). Recent studies have shown that annexin V uptake occurs not only in irreversibly damaged infarcted myocardium (37) but also temporarily in myocardium after reversible severe ischemia (38,39). These observations suggest that early phases of apoptosis are reversible and that annexin V may be used as a molecular marker to identify areas that have previously suffered severe ischemia but have not yet transformed to scar. Another approach for molecular imaging of ischemic memory is the application of the radiolabeled fatty acid analogue iodine 123 (123I) β-methyl-p-iodophenylpentadecanoic acid. After episodes of ischemia, which result in a metabolic shift from fatty acids to glucose as the preferred substrate for energy production, regional uptake of this tracer seems to be reduced for a longer period of time (40).

Coronary Artery Disease

Another area of interest for targeted molecular imaging is to identify patients with CAD who have a high likelihood for ischemia-induced remodeling, a phenomenon that results in transition to HF. Early identification of such patients would allow prevention of the development of remodeling-associated ventricular dilatation and reduction of contractile function. Alterations of the cardiac sympathetic nervous system seem to play a critical role in left ventricular remodeling. Integrity of presynaptic sympathetic nerve endings can be identified by using radiolabeled catecholamines such as 123I-m-iodobenzylguanidine (MIBG). Researchers in several studies have identified innervation defects larger than perfusion defects in patients with CAD and after MI; these findings suggest that sympathetic neurons are more sensitive to ischemia than are myocytes (41,42).

An imbalance of autonomic signal transduction may contribute to the maladaptive process of postischemic remodeling. This idea has been suggested by investigators who observed acceler-
ated ventricular dilatation in patients with larger innervation defects that were indicated by reduced myocardial MIBG uptake (43). In addition to presynaptic innervation, postsynaptic receptor density can be evaluated by using PET and radiolabeled adrenergic receptor antagonists. Findings in a study showed that reduction of β-adrenergic density early after MI can be used to predict ventricular volumes at 6 months after the event (44); such results suggest that receptor-targeted imaging may be another approach to identify candidates for remodeling. Other molecular targets in the ischemic myocardium include integrins, a group of adhesion molecules that play a central role in angiogenesis. These can be identified with specific αvβ3-integrin-targeted radiotracers in vivo (45) and may allow assessment of postsischemic recovery and angiogenesis therapy in the future (46). Finally, myocyte apoptosis is thought to be another relevant feature of remodeling that may be targeted by noninvasive molecular imaging although no detailed trials have been performed up to now.

Myocardial Viability

It has been extensively documented that patients with poor left ventricular function and advanced multivessel CAD show improved clinical outcome after surgical revascularization (47–50). These patients may benefit most from revascularization, but the decision to proceed with interventional therapy is not an inconsequential one. Patients with severe ventricular dysfunction undergo coronary artery bypass graft surgery or percutaneous coronary intervention with a considerable risk of procedure-related morbidity and mortality (50). Hence, accurate methods to identify patients who will benefit most are required to justify the potential risks.

There has been increasing clinical awareness that contractile dysfunction in patients with CAD does not necessarily reflect the presence of scar tissue (51). In investigations of contractile reserve in the catheterization laboratory in the 1970s, reversibility of left ventricular dysfunction was described (52,53). Since then, several noninvasive imaging techniques have been developed to identify tissue viability in dysfunctional myocardium and to thereby determine which patients with ventricular dysfunction are the most appropriate candidates for revascularization (54).

Two major pathogenetic mechanisms, which coexist in most clinical situations, contribute to development of dysfunctional but still viable myocardium. First, "myocardial stunning" describes a state of persistent posts ischemic contractile dysfunction despite restoration of near-normal blood flow. In addition to "acute stunning" that occurs as a consequence of a single episode of ischemia, the definition of myocardial stunning has been extended to chronic left ventricular dysfunction associated with repetitive episodes of ischemia, which is then referred to as "repetitive stunning" (55). Molecular mechanisms for stunning include intracellular calcium overload caused by ischemia, which results in desensitization and lysis of myofilaments (56), and generation of oxygen-derived free radicals, which inhibit ionic pumps and mitochondrial function, at reperfusion (57).

Second, "myocardial hibernation" has been described as a consequence of reduced resting perfusion caused by severe coronary stenosis that leads to an adaptive downregulation of contractile function, which is reversible after reestablishment of normal perfusion (51,58).
Uncoupling of contractile work and myocardial blood flow is thought to be part of this adaptation. Since approximately 60% of oxygen consumption is linked to contractile performance, energy can be saved and the tolerance to ischemia can be increased at the expense of regional dysfunction. It has been shown that this adaptive process is associated with molecular alterations, such as dedifferentiation of myocytes, decreased expression of contractile proteins, accumulation of glycogen, loss of sarcoplasmic reticulum, small mitochondria, and increasing interstitial fibrosis (59–61).

The prediction of functional recovery by using detection of myocardial viability has emerged as a clinical application for molecular imaging. Reversible left ventricular dysfunction is generally associated with maintained or even increased tissue uptake of the glucose metabolic marker FDG (62–64). Hibernating and repetitively stunned myocardia are characterized by a perfusion-metabolism mismatch pattern with reduced regional uptake of FDG metabolic tracer but preserved uptake of FDG metabolic tracer. Scar tissue, on the other hand, is characterized by a matched reduction of perfusion and FDG uptake (Fig 3). Studies of myocardial metabolism by using FDG and PET have provided important information for a better understanding of the pathophysiologic interrelations among myocardial blood flow, substrate metabolism, and contractile function in ischemically compromised myocardium. These studies have also played a fundamental role in the clinical emergence of noninvasive viability imaging and are regarded as an imaging reference standard (65,66). An extensive body of literature exists that documents the diagnostic accuracy of FDG PET for prediction of functional recovery after revascularization. In addition, the prognostic value of PET has been described (67,68), and the perfusion-metabolism mismatch has been identified as an unstable state associated with a high risk and poor outcome if not treated immediately (69,70).

Other techniques have been introduced for prediction of functional recovery and were validated compared with PET metabolic imaging (71,72). Studies of the contractile response to low-dose dobutamine by using echocardiography or MR imaging were shown to be diagnostically useful. Measurements of contractile reserve have a marginally higher specificity but somewhat lower sensitivity for prediction of functional recovery when compared with FDG metabolic imaging (71). This has been explained by the fact that FDG may be used to detect residual viable tissue in some areas where extensive fibrosis already coexists. These areas of advanced hibernation may show only slow functional improvement but may still be important to revascularize because of an association with poor outcome (73).

Further, MR imaging has been used to identify scar tissue by means of the retention of gadolinium-based contrast agent. Imaging of gadolinium-based contrast agent late enhancement allows accurate detection of the regional and transmural extent of irreversibly damaged myocardium. It has been shown that the transmural extent of gadolinium-based contrast agent enhancement is correlated with the likelihood of regional functional recovery (74). The diagnostic and prognostic accuracy of this test, however, needs to be defined in detail. Findings in other studies have suggested that functional measures of regional viability may be superior to the static measurement of the extent of necrotic tissue for prediction of recovery (75) and, thus, that biologic and molecular mechanisms other than scar develop.
Development are important in chronic ischemic ventricular dysfunction.

Innovations in molecular imaging may allow refinement of the characterization of jeopardized myocardium and, thus, further improvement of diagnostic and prognostic assessment of myocardial viability in the future. The extent of apoptotic cell death in hibernating myocardium may be identified by using tracers such as radiolabeled annexin V. This may allow one to identify the severity of ischemic damage and the transition from programmed cell survival to programmed cell death. Other biologic targets for molecular imaging in chronic dysfunctional myocardium may be extracellular matrix activation, collagen deposition, or inflammation. Finally, multimodality imaging may be of special value in chronic left ventricular dysfunction by providing a combination of morphologic, functional, and metabolic information (Fig 4).

Heart Failure

In the United States, approximately 5 million patients have HF, with an estimated 500,000 new cases diagnosed each year (76). HF is the leading cause of morbidity, mortality, and hospitalization in patients older than 60 years and is the most common Medicare diagnosis-related group (77). The direct and indirect cost of HF was estimated at $23.2 billion in 2002 (78). Clearly, this disease exerts major societal burden and costs. Yet, despite recent advances in medical therapy, nearly 300,000 patients will die of HF as a primary or secondary cause each year (79). Therefore, other treatment approaches, such as implantable cardioverter defibrillator (ICD), cardiac resynchronization therapy, cardiac gene therapy, and cardiac stem cell transplantation, have been advocated. The last two topics will be discussed in subsequent sections of this article.

It is known that approximately 50% of all HF deaths are caused by ventricular tachycardia and approximately 80% of patients with symptomatic systolic dysfunction have ventricular tachycardia (80). Results of the Multicenter Automatic Defibrillator Implantation Trial (also known as MADIT-II) showed that routine implantation of ICDs in patients with a prior MI and an ejection fraction of less than 30% led to reduction of mortality rates from 19.8% (conventional therapy group) to 14.2% (ICD group) (hazard ratio = 0.69, \(P = .16 \)) (81). Findings in this study suggested that ICD implantation should be considered routinely in all patients with reduced ventricular ejection fraction after MI (82). Besides risk of sudden cardiac death, patients with HF can have intraventricular dyssynchrony (or left bundle branch block), which causes the two ventricles to beat in an asynchronous fashion, reduces systolic function, and increases systolic volume.

Intraventricular dyssynchrony is seen in approximately 15%–30% of patients with HF (83). Cardiac resynchronization therapy paces both the right and left ventricle, which can synchronize the activation of the heart and, thus, improve left ventricular systolic function (84). This differs from the typical pacemaker, which paces only the right ventricle. In the Multicenter In-Sync Randomized Clinical Evaluation (also called MIRACLE), results indicated that cardiac resynchronization therapy improved symptoms, exercise tolerance, and quality of life substantially (84). However, the estimated cost of cardiac resynchronization therapy and/or ICD and hospitalization for implantation is between $40,000 and $50,000 per patient (78). Applying this expense to the estimated 400,000 to 1.5 million patients with HF who may benefit from ICD poses an astronomic burden to health care costs. In addition, an estimated 20%–30% of patients do not respond to cardiac resynchronization therapy (85). Thus, these issues empha-

Figure 4: Multimodality imaging of myocardial viability. Short-axis MR images show late enhancement of gadopentetate dimeglumine (in gray scale) and PET images show glucose metabolism (using FDG) and perfusion (using \(^{15}N \)–NH\(_3\)). PET images are displayed in a hot metal color scale where brighter color indicates higher radioactivity concentration. Nontransmural late enhancement, indicating subendocardial scar tissue, is shown on MR images. PET scans show reduced perfusion in the same area (bottom middle), but FDG uptake is less reduced and higher compared with perfusion (top middle). This perfusion-metabolism mismatch indicates residual viability in the subepicardial portion of the area with subendocardial scar. \(IR \) TrueFISP + Gd = inversion-recovery true fast imaging with steady-state precession and gadolinium-based contrast agent.
size the need for additional measures that can be used to selectively identify which patients will benefit the most from ICD and cardiac resynchronization therapy.

Traditionally, the single most useful diagnostic test for the evaluation of patients with HF is two-dimensional echocardiography coupled with a Doppler flow study. Echocardiography can provide global and regional function, degree of ventricular remodeling, contractile reserve, ischemia, and viability, particularly in patients after acute coronary syndromes or patients with chronic HF. However, these measurements do not address the issue of intraventricular conduction delays. Newer echocardiographic measurements, which include tissue Doppler imaging (86), strain rate imaging (87), and tissue tracking (88), have all been advocated. These parameters may provide optimal information on intraventricular dyssynchrony and allow prospective identification of responders to cardiac resynchronization therapy (89). A detailed discussion of each modality is beyond the scope of this review, but interested readers should refer to published articles (89,90).

Investigators in several studies have also demonstrated that 123I-MIBG imaging can provide powerful diagnostic and prognostic information in patients with HF. Many radiotracers for scintigraphic imaging of cardiac neurotransmission have been developed with radiolabeling of the neurotransmitters or their structural analogs (Fig 5a). Of these, MIBG shares many cellular uptake and storage properties with norepinephrine, and, thus, MIBG scans have been used to evaluate cardiac sympathetic nervous system distribution and function. In patients with HF, MIBG scans typically show a reduced heart-mediastinum uptake ratio, heterogeneous distribution within the myocardium, and increased MIBG washout from the heart (91–93) (Fig 5b, 5c). For example, Arimoto et al (94) showed that patients with abnormally rapid washout levels had a significantly higher cardiac event rate than did those with normal washout levels (57% vs 12%, $P < .0001$) during the follow-up period (6–30 months).

Kyuma et al (95) showed increm-
Cardiac Gene Therapy

Gene transfer has been heralded as the most promising therapy of molecular medicine in the 21st century. It is usually defined as the transfer and expression of DNA to somatic cells in an individual, with a resulting therapeutic effect. In cardiovascular diseases, gene therapy offers an exciting new approach to express the therapeutic factors locally in the myocardium (97). In general, the successful application of gene therapy requires three essential elements: (a) a vector for gene delivery, (b) delivery of the vector to the target tissue, and (c) a therapeutic gene to be expressed in a particular patient population.

An ideal vector should enable efficient gene delivery to the target tissue, have minimal local or systemic toxicity, deliver enough concentration and duration to induce a therapeutic effect, and cause no germ-line transmission to the offspring. No single vector has all of these attributes, and, therefore, the type of vector chosen will need to be tailored to the specific clinical applications. Vectors can be classified as viral vectors and nonviral vectors. Common viral vectors include adenovirus, adeno-associated virus, retrovirus, and lentivirus. Nonviral vectors include plasmids, naked DNA, and liposomes.

Gene transfer has been heralded as the most promising therapy of molecular medicine in the 21st century. It is usually defined as the transfer and expression of DNA to somatic cells in an individual, with a resulting therapeutic effect. In cardiovascular diseases, gene therapy offers an exciting new approach to express the therapeutic factors locally in the myocardium (97). In general, the successful application of gene therapy requires three essential elements: (a) a vector for gene delivery, (b) delivery of the vector to the target tissue, and (c) a therapeutic gene to be expressed in a particular patient population.

An ideal vector should enable efficient gene delivery to the target tissue, have minimal local or systemic toxicity, deliver enough concentration and duration to induce a therapeutic effect, and cause no germ-line transmission to the offspring. No single vector has all of these attributes, and, therefore, the type of vector chosen will need to be tailored to the specific clinical applications. Vectors can be classified as viral vectors and nonviral vectors. Common viral vectors include adenovirus, adeno-associated virus, retrovirus, and lentivirus. Nonviral vectors include plasmids, naked DNA, and liposomes.
Transcription of the reporter gene and translation of the messenger RNA lead to a reporter protein product that can interact with the reporter probe. This interaction may be enzyme based (e.g., phosphorylation of a reporter probe with intracellular retention of metabolites) or receptor based (e.g., binding of a radiolabeled ligand to cell surface receptors) (98). Clearly, much flexibility exists within these systems. By altering various components, the reporter gene can provide information about the efficiency of vector transfection into cells, regulation of DNA by upstream promoters, and the fate of intracellular protein trafficking. In addition, the reporter probe itself does not...
have to be changed if one wishes to study a new biological process, which saves valuable time needed to synthesize, test, and validate new radiotracer agents.

The feasibility of linking a PET reporter gene to a therapeutic gene was demonstrated in two separate studies (124,125). In this case, an adenovirus containing two constitutive cytomegalo-virus (CMV) promoters driving a VEGF_{121} therapeutic gene and an HSV1-sr39tk PET reporter gene separated by poly-adenine sequences was constructed (Ad-CMV-VEGF_{121}-CMV-HSV1-sr39tk) (Fig 7a). Wu et al injected the construct into the myocardium of a rat in an MI model. Reporter gene expression, which indirectly reflects the VEGF_{121} therapeutic gene expression, persisted for only approximately 2 weeks because of host immune response against the adenovirus (124). At 2 months, there was no substantial improvement in myocardial contractility, perfusion, or metabolism as measured by using echocardiography, {^{13}}N ammonia (\([^{13}N]\text{-NH}_3\)) perfusion, and FDG imaging between study and control groups (Fig 7b). Thus, this study highlights the importance of monitoring the pharmacokinetics of gene expression. It also demonstrates the proof of principle that any other cardiac therapeutic genes of interest (eg, hypoxia-inducible factor 1α, sarcomplasmic endoplasmic reticulum Ca^{2+}, heat shock protein, or endothelial nitric oxide synthase) can likewise be coupled to a PET reporter gene for subsequent noninvasive monitoring.

In the future, it will also be useful to have the following arsenals for cardiac gene therapy: (a) less immunogenic vectors such as adenoassociated virus that can prolong transgene expression in the myocardium (126); (b) cardiac tissue-specific promoter (eg, myosin light chain kinase or troponin) that can diminish unwanted extracardiac activity (82); (c) codelivery of proangiogenic genes with stem cells to enhance revascularization (127); and (d) multimodality molecular imaging approaches that can monitor the location, magnitude, and duration of transgene expressions, as well as their downstream functional effects (98,116).

Stem Cell Transplantation

In an acute MI, tissue loss leads to hemodynamic stress followed by compensatory left ventricular hypertrophy and dilatation. Many patients continue to develop refractory HF symptoms and require more aggressive approaches, such as a left ventricular assist device and orthotopic heart transplantation. However, the limitations of these approaches (eg, infection and bleeding for left ventricular assist device and organ shortage and graft rejection for orthotopic heart transplantation) justify the search for alternative therapeutic options.

Stem cell transplantation holds potential promise for treatment of ischemic heart disease. Orlic et al (128) reported transdifferentiation of bone marrow–derived hematopoietic stem cells into cardiomyocytes after myocardial
injury in mice. However, researchers in subsequent studies have questioned the concept of differentiation across tissue lineage boundaries (129,130). Regardless, several phase 1 clinical trials involving transplantation of bone marrow stem cells, skeletal myoblasts, and endothelial progenitor cells have been initiated since then (131–138). Assmus et al (132) showed that transplantation of progenitor cells was associated with a substantial increase in global left ventricular ejection fraction, improved regional wall motion in the infarct zone, and reduced end-systolic left ventricular volumes at 4-month follow-up (Fig 8).

Wollert et al (138) showed that the mean global left ventricular ejection fraction, as determined with cardiac MR imaging, increased by 6.7% in patients after MI who received autologous bone marrow stem cells ($n = 30$) compared with 0.7% in the control group ($n = 30$) ($P = .0026$). The mechanisms of improvement may be related to improved angiogenesis or vasculogenesis, better survival of hibernating myocardium, paracrine effects of injured cells, or modulation of the wound tissue. Interestingly, the 18-month follow-up data from the same study showed that the difference in left ventricular ejection fraction was no longer significant ($P = .27$) (139). The authors suggested that bone marrow stem cell transplantation may not lead to substantial formation of new myocardial tissues and that pharmacologic or genetic strategies may be warranted to enhance myocardial engraftment and increase its therapeutic efficacy.

One of the main limitations of cardiac stem cell transplantation is the lack of available methods to assess stem cell survival. In clinical studies, changes in myocardial perfusion, viability, and perfusion are assessed with echocardiography, nuclear SPECT and PET imaging, or MR imaging (Table 2). These parameters can be used to measure the therapeutic effects but not to actually detect the presence or absence of transplanted stem cells. This is an important distinction because most patients also undergo concurrent coronary artery bypass graft or percutaneous coronary in-
tervention, and it is not clear whether the improvement is due to these procedures or to the transplanted stem cells. Likewise, in animal studies, analysis of stem cell survival is based on postmortem histologic examination, which is invasive and precludes longitudinal monitoring (128–130,140). Thus, the ability to study stem cells in the context of the intact whole-body system rather than with indirect (clinical trials) or invasive (animal studies) means will give better insight into the underlying biology and physiology of stem cells. Several investigators have started addressing this issue through different approaches, including radionuclide labeling, ferromagnetic labeling, and reporter gene labeling (Table 3).

For radionuclide labeling, Aicher et al (141) injected endothelial progenitor cells with indium 111 (111In) oxine into nude rats with infarcted myocardium. At 24 to 96 hours, images obtained with a double-headed gamma camera showed that the ratio of specific radioactivity of the heart was approximately twice the activity of peripheral skeletal muscle tissue. The main limitation of this approach is that 111In-oxine has a physical half-life of 2.8 days, so cell distribution can be studied only for 5–7 days. For ferromagnetic labeling, Kraitchman et al (142) injected swine mesenchymal stem cells with ferumoxides injectable solution (Feridex; Berlex, Montville, NJ), with $25 \mu g$ of iron per milliliter, into pig hearts. Images were obtained by using a 1.5-T MR imager (CV/i; GE Medical Systems, Milwaukee, Wis). After 24 hours, the injected sites appeared as ovoid hypointense lesions with sharp borders. At 1–3 weeks after cell injection, the delineation of the borders was less clear because of degradation of the ferumoxides particles. The main limitation of this approach is that 111In-oxine has a physical half-life of 2.8 days, so cell distribution can be studied only for 5–7 days.

For reporter gene labeling, the cells are transfected with reporter genes...
prior to implantation into the myocardium. If the cells are alive, the reporter gene will be expressed. If the cells are dead, the reporter gene will not be expressed. By using this approach, Wu et al (143) injected embryonic cardiomyoblasts expressing either firefly luciferase or HSV1-sr39tk reporter genes that were tracked noninvasively by using optical bioluminescence or micro-PET imaging, respectively (Fig 9). Drastic reductions of signal intensity within the first 1–4 days were noted and were likely due to acute donor cell death from inflammation, adenoviral toxicity, ischemia, and apoptosis. The pattern of cell death was consistent with data in other reports in which invasive assays, such as serial histologic staining (144), terminal transferase uridyl nick end labeling apoptosis assays (145), and TaqMan real-time polymerase chain reaction assays, were used (146).

In contrast, transplantation of mouse embryonic stem cells in the myocardium led to intracardiac and extracardiac teratoma formation, as determined by using molecular imaging techniques, and raised serious doubts about the use of undifferentiated embryonic stem cells for myocardial regeneration (147). Interestingly, the PET reporter gene (herpes simplex virus type 1 truncated thymidine kinase [HSV1-ttk]) can also serve as a suicide gene by treating the animals with ganciclovir and allows for a backup safety measure against stem cell misbehavior. Finally, the safety of reporter gene expression in stem cells was recently evaluated by comparing the transcriptional profile of normal mouse embryonic stem cells versus embryonic stem cells stably expressing fluorescence (monomeric red fluorescence protein), bioluminescence (firefly luciferase), and PET (HSV1-ttk) fusion reporter genes (148). Of 20,371 genes analyzed, there were only 296 genes, representing approximately 1.4% of total genes, that had more than twofold up- or downregulation on the basis of gene ontology annotation. More important, expression of these reporter genes had no major adverse effects on embryonic stem cell viability, proliferation, or differentiation.

In the future, it will be important to use these molecular imaging approaches to assess the in vivo biology of different stem cell types. Because of its noninvasive nature, molecular imaging has the potential to help accelerate research progress through evaluation of variables such as the optimal cell type, cell dosage, or delivery route. Perhaps even more important is the investigation of the means aimed at preventing acute donor cell death, which may be the most critical variable for determining the efficacy of stem cell therapy (149–151). Ultimately, the goal is to develop and standardize stem cell transplantation protocols that are safe, quantifiable, and reproducible in the future, thereby avoiding the controversies that have plagued cardiac gene therapy trials (152).

Conclusion

In summary, molecular imaging is an exciting field. It combines the disciplines of molecular biology, radiochemistry, pharmacology, instrumentation, and clinical medicine into a new imaging paradigm. As discussed in this review, molecular imaging can be used to study cardiac neurotransmission, plaque vulnerability, inflammation, myocardial viability, as well as newer research sub-

Table 3

<table>
<thead>
<tr>
<th>Imaging Strategies in Cardiovascular Diseases</th>
<th>Target</th>
<th>Past Strategy</th>
<th>Present Strategy</th>
<th>Future Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Invasive angiography</td>
<td>Invasive angiography and intravascular US, CT angiography</td>
<td>Invasive angiography and optical coherence tomography; noninvasive angiography with CT and MR imaging; morphologic and biologic plaque characterization with CT, MR imaging, and nuclear imaging</td>
<td></td>
</tr>
<tr>
<td>Ischemia</td>
<td>Perfusion SPECT, stress echocardiography</td>
<td>SPECT, PET, echocardiography, and MR imaging of perfusion and function</td>
<td>One-stop shop MR imaging of morphology, function, perfusion, and viability; hybrid SPECT/CT and PET/CT imaging; molecular imaging with markers of ischemic memory, remodeling, and myocardial adaptive mechanisms</td>
<td></td>
</tr>
<tr>
<td>Viability</td>
<td>FDG PET, 201Tl SPECT</td>
<td>FDG PET, dobutamine echocardiography, and gadolinium-enhanced MR imaging</td>
<td>One-stop shop MR imaging of morphology, function, perfusion, and viability; multimodality imaging of biology, contractile reserve, and geometry</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>Two-dimensional and Doppler echocardiography</td>
<td>Two-dimensional and Doppler echocardiography</td>
<td>Echocardiography with tissue Doppler imaging, strain rate imaging, and tissue tracking to help select candidates for cardiac resynchronization therapy; nuclear imaging with 123I-MIBG to help select candidates for ICD implantation</td>
<td></td>
</tr>
<tr>
<td>Gene therapy</td>
<td>None</td>
<td>Functional imaging with SPECT, PET, and echocardiography</td>
<td>Functional imaging and molecular imaging of cardiac transgene expression</td>
<td></td>
</tr>
<tr>
<td>Stem cell therapy</td>
<td>None</td>
<td>Functional imaging with SPECT, PET, echocardiography, and MR imaging</td>
<td>Functional imaging and molecular imaging of stem cell survival and proliferation</td>
<td></td>
</tr>
</tbody>
</table>
jects, such as gene transfer and stem cell survival, that have generated much attention over recent years. Future directions include understanding the molecular mechanisms of individual disease processes, developing newer and more physiologic tracers that target specific disease sites, and implementing multimodality imaging approaches that produce fast throughput analysis in animal studies (optical), high-resolution images (echocardiography, MR imaging), and functional information (SPECT, PET). All of these measures will be essential as the field moves forward from translational animal studies to the clinical arena.

References

15. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation...

90. Sutherland GR, Di Salvo G, Claus P, D’Hooge J, Bijnens B. Strain and strain rate

136. Perin EC, Dohmann HF, Borovevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ische-