QIBA NM Coordinating Committee Update

Annual QIBA Meeting
Wednesday, May 17, 2017

Modality Committee Structure

- **NM Coordinating Committee**, Richard Wahl, MD; Eric Perlman, MD; David Mozley, MD

- **FDG-PET/CT Biomarker Committee**, Rathan Subramaniam, MD, PhD, MPH; John Sunderland, PhD; Scott Wollenweber, PhD
 - **Profile Conformance Task Force**, Timothy Turkington, PhD; Ronald Boellaard, PhD; Martin Lodge, PhD

- **PET-Amyloid Biomarker Committee**, Eric Perlman, MD; Satoshi Minoshima, MD, PhD; Anne Smith, PhD

- **SPECT Biomarker Committee**, Yuni Dewaraja, PhD; David Mozley, MD; John Seibyl, MD
 - **Ioflupane/I-123 Brain/Neuropsych Task Force**, John Dickson, PhD; John Seibyl, MD
 - **99mTc Body Oncology & Immunology Task**, Yuni Dewaraja, PhD; David Mozley, MD
Current Status: Profiles

- FDG-PET/CT Profile
 - Technically Confirmed
 - Updates needed for TOF, PSF, LBM
 - Clinically confirmed stage requires multi-center study with 50 to 100 subjects. Study protocol in drafting stage
 - No timeline yet for Clinically confirmed stage

- PET-Amyloid Profile
 - BC approved release for Public Comment. Next is review by NM CC (June 1)

- SPECT-123I-DAT Profile
 - Public comment phase closed, now reviewing comments

Round 6 NIBIB Funded Projects

<table>
<thead>
<tr>
<th>YR</th>
<th>Code</th>
<th>Committee</th>
<th>NM Projects</th>
<th>Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2016-R1</td>
<td>FDG-PET/CT</td>
<td>SUV Quantification with Point Spread Function PET Reconstruction</td>
<td>Lodge</td>
</tr>
<tr>
<td></td>
<td>2016-R2</td>
<td>FDG-PET/CT</td>
<td>SUV Quantification with Point Spread Function PET Reconstruction</td>
<td>Boellaard</td>
</tr>
<tr>
<td></td>
<td>2016-V1</td>
<td>SPECT</td>
<td>Multi-center Phantom Study to Characterize Bias and Precision of Quantitative I-123 SPECT</td>
<td>Dewaraja</td>
</tr>
<tr>
<td></td>
<td>2016-V2</td>
<td>SPECT</td>
<td>Multi-center Phantom Study to Characterize Bias and Precision of Quantitative I-123 SPECT</td>
<td>Dickson</td>
</tr>
<tr>
<td></td>
<td>2016-X</td>
<td>SPECT</td>
<td>I-123 DAT Scan Digital Reference Object Development</td>
<td>Miyaoka</td>
</tr>
<tr>
<td></td>
<td>2016-CC</td>
<td>FDG-PET/CT</td>
<td>Simple Variable Estimates in PET</td>
<td>Turkington</td>
</tr>
<tr>
<td></td>
<td>2016-DD</td>
<td>PET Amyloid</td>
<td>Quantification of Reconstruction Method Impact on Measured Amyloid Load</td>
<td>Matthews</td>
</tr>
</tbody>
</table>
Example Results of Funded Projects

PET Amyloid DRO in development

Segmented MRI

Positive patient image
CSF $\neq 0$

Initial DRO with full modeling
CSF $\equiv 0$

DRO with full modeling + scatter factors
CSF $\neq 0$

Example Results of Funded Projects

PET Amyloid DRO in development
Initial results using vendor software
Example Results of Funded Projects

SPECT 123I-DAT DRO in development

Diseased

Normal

Reduced uptake similar to physical phantom

Ratio of Putamen and Caudate to background is 4.5:1

Example Results of Funded Projects

SPECT 123I-DAT DRO in development

Initial results using vendor DAT software: diseased left putamen

<table>
<thead>
<tr>
<th>Striatum Right SBR</th>
<th>Striatum Left SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2.01</td>
<td>+1.25</td>
</tr>
</tbody>
</table>
Example Results of Funded Projects

Multi-center phantom study to characterize bias and precision of quantitative 123I-DAT SPECT

CT and Fused SPECT/CT images showing the change in contrast using ACSCRR reconstruction (left), and FBP reconstruction (right). Left side striatal components were filled to simulate an abnormal uptake pattern similar to DRO.

Example Results of Funded Projects

Impact of reconstruction on PET amyloid quantitation

Left: OSEM+TOF w 50 cm FOV. Right: Difference w 25 cm FOV. Differences are likely due to truncation of head holder in CT image.
Example Results of Funded Projects

Impact of reconstruction on PET amyloid quantitation

Pink subject areas are more than 4% different from reference recon

<table>
<thead>
<tr>
<th>Region of Interest</th>
<th>$MK_{2}^{C}N$</th>
<th>$MK_{4}^{C}N$</th>
<th>$MK_{2}^{C}F$</th>
<th>$MK_{4}^{C}F$</th>
<th>$MK_{2}^{C}F$</th>
<th>$MK_{4}^{C}F$</th>
<th>$MK_{2}^{C}P$</th>
<th>$MK_{4}^{C}P$</th>
<th>$MK_{2}^{C}F$</th>
<th>$MK_{4}^{C}F$</th>
<th>$MK_{2}^{C}P$</th>
<th>$MK_{4}^{C}P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Whole brain</td>
<td>0.2%</td>
</tr>
<tr>
<td>Cerebellum area 1</td>
<td>0.6%</td>
</tr>
<tr>
<td>Cerebellum area 2</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

FDG-PET/CT Profile

- Profile is Technically Confirmed.
 - Current discussions are centered on how to move to ‘claim confirmed’ stage
 - Initial trial design is drafted. Need minimum of 50 repeat scans of patients at 5 sites. 100 scans would be better. Focus of F2F will be on funding methods
 - No timeframe yet for Claim Confirmed stage
- Concerns
 - Funding for next phase as described above
 - Profile needs updating to take into account TOF systems, PSF reconstructions, and new LBM formulation. PSF groundwork project underway (by Martin Lodge)
- Are there any anticipated new biomarkers for consideration in the coming year?
 - PET/MR systems: No specific proposal or biomarker yet
 - FLT or Ga68-PSMA prostate agents: No quantitative goal or specific proposal yet
- Opportunities for cross-organizational or international engagement?
 - potentially FNIH, ECOG-ACRIN, QIN?
PET-Amyloid Profile

- Profile status: BC approved release for Public Comment. Next is NM CC (June 1)
 - Will need to solicit and collect comments, and respond to comments
 - Several ‘Open Items’ to be addressed during Public Review
 - Completion 3Q17?
 - No new groundwork projects needed for current version
- Concerns: Is Claim of 2.9% within subject coefficient of variation of SUVR ‘tight enough’ to address clinical need?
 - Could be addressed with access to more data to improve estimate
 - After Publically-reviewed version, not clear how to conduct field tests etc. to reach Technically Confirmed stage. Potential partners: Alzheimer’s Association (funding?); ADNI (instantiate Profile?); GAIN (assistance with Profile stage progression?); FNIH or NIA (funding?)
- New Biomarkers under consideration: Tau agents (fluid field), PET/MR, FDG for AD and dementia. No specific proposals yet.

SPECT-123I-DAT Profile

- Profile Status: Post public comment phase, with many comments received. Now addressing comments on group calls every 2 weeks.
 - Expected completion 2Q17?
 - No new groundwork projects needed
- Concerns: After Publically-reviewed version, not clear how to conduct field tests etc. to reach Technically Confirmed stage.
 - Potentially partner with MJF foundation
- New Biomarkers under consideration: The SPECT BC has started a “99mTc Body Oncology & Immunology” Task Force (co-chairs Dewaraja & Mozley) with a goal of starting a new Profile
 - BC structure modified accordingly with 2 Task Forces
 - The 99mTc Body Oncology & Immunology is targeted for 4Q2017