QIBA CT Coordinating Committee Update

Wednesday, May 5, 2015

Modality Structure

• CT Volumetry Biomarker Committee
 Gregory Goldmacher, MD, PhD, MBA
 Samuel Armato III, PhD
 Jenifer Siegelman, MD, MPH
 • Volumetry Algorithm Challenge Task Force
 Maria Athelogou, PhD
 • Small Lung Nodule Task Force
 David Gierada, MD
 James Mulshine, MD
 Samuel Armato III, PhD

• Lung Density Biomarker Committee
 Philip Judy, PhD
 • Airway Measurement Task Force
 Sean Fain, PhD
Current Status: Profile Development

• Profile(s) in progress: CT Volumetry
 • Claim revised to match metrology
 • Years of commentary incorporated
 • Conformance procedures provisionally defined
 • Breakout session today – finalize this version
 • Ready for field test!

Current Status: Profile Development

• Profile(s) in progress: Small Nodule Volumetry
 • Claim numbers supported by groundwork
 • Claim wording matches main volumetry profile
 • Specifications completed
 • Compliance to be aligned with main profile
Current Status: Profile Development

- Profile(s) in progress: Lung Density
 - Working draft completed
 - Acquisition/reconstruction specs will be revised this week
 - Precision claim finalized
 - Volume correction method undetermined → Round 5 project

Activities/Projects

- Volumetry
 - Algorithm challenges
 - Liver phantom
 - Virtual lesions
 - Field test!

- Lung Density
 - Vendor COPDGene Phantom
 - AEC evaluation
 - Dose reduction effects
 - Volume correction methods
Algorithm Challenges

- Maria Athelogou, PhD
- Andrew Buckler, MS
- Phantom and clinical data analyses complete
- Publications in process

Liver Phantom

- Binsheng Zhao, PhD
- Nicholas Petrick, PhD
- Current profile based entirely on lung data
Liver Phantom Project

Abdomen Phantom Design

CT images of the liver phantom

Portal venous phase

Arterial phase
Liver Phantom Project

Lesion size measurements

- CU algorithm:
 Based on a marker-controlled watershed transformation
- FDA algorithm:
 Matched-filter based volume estimator

Preliminary statistical analysis

- Accuracy
 Bias/linearity (w Cis)
- Precision
 Repeatability
 Reproducibility
 Bland-Altman comparison of algorithms

Liver Phantom Project

- Received liver insert for complex liver
Liver Phantom Project

- Identified vascular materials & background technique for arterial/portal phase simulation
 - Working on simulating fatty infiltration

<table>
<thead>
<tr>
<th>Index</th>
<th>Equivalent diameter</th>
<th>Shape</th>
<th>Portal venous phase (bk=110HU)</th>
<th>Lesion density</th>
<th>Lesion-bk difference</th>
<th>Arterial phase (bk=80HU)</th>
<th>Lesion density</th>
<th>Lesion-bk difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 mm</td>
<td>Spherical</td>
<td>80HU</td>
<td>-30 HU</td>
<td>95HU</td>
<td>+15 HU</td>
<td>95HU</td>
<td>+15 HU</td>
</tr>
<tr>
<td>2</td>
<td>20 mm</td>
<td>Spherical</td>
<td>95HU</td>
<td>-15 HU</td>
<td>110HU</td>
<td>+30 HU</td>
<td>110HU</td>
<td>+30 HU</td>
</tr>
<tr>
<td>3</td>
<td>14 mm</td>
<td>Spherical</td>
<td>80HU</td>
<td>-30 HU</td>
<td>95HU</td>
<td>+15 HU</td>
<td>95HU</td>
<td>+15 HU</td>
</tr>
<tr>
<td>4</td>
<td>14 mm</td>
<td>Spherical</td>
<td>95HU</td>
<td>-15 HU</td>
<td>110HU</td>
<td>+30 HU</td>
<td>110HU</td>
<td>+30 HU</td>
</tr>
<tr>
<td>5</td>
<td>10 mm</td>
<td>Spherical</td>
<td>80HU</td>
<td>-30 HU</td>
<td>95HU</td>
<td>+15 HU</td>
<td>95HU</td>
<td>+15 HU</td>
</tr>
<tr>
<td>6</td>
<td>10 mm</td>
<td>Spherical</td>
<td>95HU</td>
<td>-15 HU</td>
<td>110HU</td>
<td>+30 HU</td>
<td>110HU</td>
<td>+30 HU</td>
</tr>
<tr>
<td>7</td>
<td>7 mm</td>
<td>Spherical</td>
<td>80HU</td>
<td>-30 HU</td>
<td>95HU</td>
<td>+15 HU</td>
<td>95HU</td>
<td>+15 HU</td>
</tr>
<tr>
<td>8</td>
<td>7 mm</td>
<td>Spherical</td>
<td>95HU</td>
<td>-15 HU</td>
<td>110HU</td>
<td>+30 HU</td>
<td>110HU</td>
<td>+30 HU</td>
</tr>
<tr>
<td>9</td>
<td>5 mm</td>
<td>Spherical</td>
<td>80HU</td>
<td>-30 HU</td>
<td>95HU</td>
<td>+15 HU</td>
<td>95HU</td>
<td>+15 HU</td>
</tr>
<tr>
<td>10</td>
<td>5 mm</td>
<td>Spherical</td>
<td>95HU</td>
<td>-15 HU</td>
<td>110HU</td>
<td>+30 HU</td>
<td>110HU</td>
<td>+30 HU</td>
</tr>
</tbody>
</table>
Liver Phantom Project

- Proposed imaging protocol
 - 3 phantom x 3 dose x 10 repeats = 90 acquisition
 - 90 acquisition x 2 recon algorithm = 180 set of images
 - 180 x 20 nodules = 3600 measurements

<table>
<thead>
<tr>
<th></th>
<th>Dose L</th>
<th>Dose M</th>
<th>Dose H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform background</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
</tr>
<tr>
<td>Vessel attachment</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
</tr>
<tr>
<td>Vessel attachment & fat infiltration</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
<td>10 repeat x 2 recon</td>
</tr>
</tbody>
</table>

Dose H ~ clinical dose level
Dose M ~ (1+\mu)/2 * Dose H
Dose L ~ \mu * Dose H
\mu is about 0.4

Virtual Lesions

- Ehsan Samei, PhD
- Berkman Sahiner, PhD
Virtual Lesions

Techniques

1. Image space Lesion Addition

2. Projection space Lesion Addition

Virtual Lesions

Techniques

1. Image space Lesion Addition

2. Projection space Lesion Addition
LESION MODEL

\[c(\theta, \phi, r) = B + C \left(1 - \left(\frac{r}{R_{\theta, \phi}} \right)^{2^n} \right) \]

Attenuation

Background

Contrast

Spherical Coordinates

Edge Blur

Shape

WHICH ONE IS REAL?

![Image of lesion model with various graphs and examples of different tissues](image-url)

X. Li, E. Samei, et al. Br J Radiol. 2009
Next Steps

• Demonstrate statistical exchangeability
• Generate static data set
• Create dynamic platform

Lung Density Biomarker Committee Activities

1. Vendor COPDGene phantom study
 • Mathew Fuld and Bernice Hoppel
2. Automatic Exposure Control (AEC) evaluation
 • Sean Fain
3. Dose reduction effects on emphysema metrics
 • Philip Judy
4. Volume correction
 • Heather Chan-Mayer
Vendor COPDGene Phantom Study

• **Purpose**: Acquisition and reconstruction specs to control lung density measurement bias

• Task Group of CT vendor scientists
 – Develop a compliance checklist
 – Suggest changes to acquisition and reconstruction parameter Profile specification

COPDGene Phantom Study

• Phantom scanning
 – Same COPDGene phantom
 – Three dose levels (5 mGy, 3 mGy, 1.5 mGy)
 – 8-10 sec acquisition time for 40 cm z-coverage
 – Several kVps (80 - 140)
 – Five scans for variability
 – Each of 4 vendors will use two different models

• Measurements
 – Noise levels
 – Resolution measurements
 – HU variability

• Status:
 – Scans completed
 – Preliminary report at today’s breakout session
AEC Evaluation

Goal:
Evaluate quantification impact of different AEC methods

Task:
Identify appropriate phantom and compare AEC methods

Status: Phantom identified; scans being performed

Dose reduction effects on emphysema metrics

- COPDGene study may lower mAs for 10 year inspiration exams (200 mAS => 50 mAs).
 – QIBA Lung Density Profile draft specifies 50 mAs
- Estimate bias differences created by change to 50 mAs.
- Compare results of volume corrected 50 mAs expiration exam
Volume Correction

• Rationale:
 – Natural progression: after age 50, lung density declines about 1.5 g/L 1.5 HU per year.
 – Current repeatability coefficient (within-subject variance) is 10 times higher.
 – Perc15 value changes depending on state of inflation

Volume correction using duplicate COPDGene exams

• Meta-analysis for precision claim: lung volume correction will improve repeatability

• Two possible methods

• Use duplicate exams from COPDGene Study to compare methods
CT Volumetry Field Test

• Goals:
 – Determine feasibility/usability
 – Run the profile end to end, measure precision
 – Expand profile data beyond lung
 – Provide sequestered data for conformance testing

CT Volumetry Field Test

• Protocol:
 – Test / re-test (“coffee break”)
 – Same scanner and different scanners
 – Segmentation by at least 5 readers
 – Using 3 software systems

 – Issues still under discussion
 • PI, IV contrast, analysis plan
CT Volumetry Field Test

• Timelines:
 – Year 1: 4 sites scanning 22 subjects each
 – Year 2: Scan segmentation and statistical analysis
 • Collaboration with QIN on structure

CT Volumetry Field Test

• Deliverables:
 – Public data set (n=72) for algorithm development
 – Sequestered data (n=16) for conformance testing
 – Support for precision values in claim

<table>
<thead>
<tr>
<th>Different Acquisition Device</th>
<th>Same Acquisition Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different Radiologist</td>
<td>Same Radiologist</td>
</tr>
<tr>
<td>Different Analysis Tool</td>
<td>Same Analysis Tool</td>
</tr>
<tr>
<td>A%</td>
<td>B%</td>
</tr>
<tr>
<td>C%</td>
<td>D%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Challenges/Next Steps/Future Plans

- CT Volumetry Field Test
 - We will need volunteer radiologists