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Anthony V. Proto, MD, Editor

Radiology 2002—Statistical Concepts Series1

As of January 2001, we began review by
statisticians of all manuscripts that have
statistical content and that are to be pub-
lished in Radiology (1). Although I be-
lieved, from its inception, this form of
manuscript evaluation to be an essential
component of the peer-review process,
my belief has been further confirmed
over the past many months. One of the
most common comments by our statisti-
cal reviewers is that authors have selected
inappropriate statistical tests for the anal-
ysis of their data. We urge authors to
consult with statisticians regarding the
analysis of their data. It is particularly
important that a study be designed and
data be collected in a manner that will
allow the study hypothesis to be ade-
quately evaluated. Statistical consulta-
tion in the study-planning stages can
help ensure success in this regard.

With the November 2002 issue of Ra-
diology, we begin a special series of arti-
cles that will appear in the section enti-
tled Statistical Concepts Series. As I
announced earlier this year (2), we are
indebted to Kimberly E. Applegate, MD,
MS, and Philip E. Crewson, PhD, for co-
ordinating this series. Dr Applegate, an
RSNA Editorial Fellow in the year 2000, is
currently associate professor of Radiology
and Health Services Research at Indiana
University, Indianapolis. Dr Crewson,
formerly director of Clinical Studies, Re-
search Development, at the American
College of Radiology, is currently assis-
tant director of Scientific Development,
Health Services Research, and Develop-
ment Service at the Office of Research
and Development, Department of Veter-
ans Affairs, Washington, DC. Both Dr
Applegate and Dr Crewson have ex-
pended a substantial amount of time and
effort in selecting topics for this series,
identifying the authors for the various
topics, and working with the authors to
ensure an appropriate level of depth of
coverage for each topic without undue
overlap with other topics in the series.
After review of their manuscripts by Drs
Applegate and Crewson, authors submit-
ted the manuscripts to the Radiology Ed-
itorial Office for peer review.

We hope that authors, reviewers, and
readers will find this series of articles

helpful—authors with regard to the de-
sign of their studies and the analysis of
their data, reviewers with regard to their
evaluation and critique of manuscripts
during the peer-review process, and readers
with regard to improved understanding
and interpretation of articles published
in Radiology. Since we have established
the section title Statistical Concept Series
for these articles, they will be accessible
through Radiology Online (radiology.rsnajnls
.org) by clicking first on Browse by Sub-
specialty and Category (Radiology Col-
lections) and second on this section title.
As noted by Drs Applegate and Crewson
in their article “An Introduction to Bio-
statistics,” the first in this series and pub-
lished in the current issue of the Journal
(3), “These articles are meant to increase
understanding of how statistics can and
should be applied in radiology research
so that radiologists can appropriately in-
terpret the results of a study.”
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An Introduction to
Biostatistics1

This introduction to biostatistics and measurement is the first in a series of articles
designed to provide Radiology readers with a basic understanding of statistical
concepts. Although most readers of the radiology literature know that application of
study results to their practice requires an understanding of statistical issues, many
may not be fully conversant with how to interpret statistics. The goal of this series
is to enhance the ability of radiologists to evaluate the literature competently and
critically, not make them into statisticians.
© RSNA, 2002

There are three kinds of lies: lies, damned lies and statistics.
Benjamin Disraeli (1)

The use of statistics in both radiology journals and the broader medical literature has
become a common feature of published clinical research (2). Although not often recog-
nized by the casual consumer of research, errors in statistical analysis are common, and
many believe that as many as 50% of the articles in the medical literature have statistical
flaws (2). Most radiologists, however, are poorly equipped to properly interpret many of
the statistics reported in the radiology literature. There are a number of reasons for this
problem, but the reality for the radiology profession is that research methods have long
been a low priority in the training of radiologists (3–5). Contributing to this deficit is a
general indifference toward statistical teaching in medical school and physician training,
insufficient numbers of statisticians, and limited collaboration and understanding be-
tween radiologists and statisticians (2,6,7).

If it has traditionally been such a low priority in the profession, why then do we need
to improve our understanding of statistics? We are consumers of information. Statistics
allow us to organize and summarize information and to make decisions by using only a
sample of all available data. Nearly all readers of the radiology literature know that
understanding a study’s results and determining the applicability of the results to their
practice requires an understanding of statistical issues (5). Even when learned, however,
research skills can be quickly forgotten if not applied on a regular basis—something most
radiologists are unlikely to do, given their increasing clinical demands.

This introduction to biostatistics and measurement is the first in a series of articles
designed to provide Radiology readers with a basic understanding of statistical concepts.
These articles are meant to increase understanding of how statistics can and should be
applied in radiology research so that radiologists can appropriately interpret the results of
a study. Each article will provide a short summary of a statistical topic. The series begins
with basic measurement issues and progress from descriptive statistics to hypothesis
testing, multivariate models, and selected technology-assessment topics. Key concepts
presented in this series will be directly related to the practice of radiology and radiologic
research. In some cases, formulas will be provided for those who wish to develop a deeper
understanding; however, the goal of this series is to enhance the ability of radiologists to
evaluate the literature competently and critically, not to make them statisticians.

The concepts presented in this introductory article are important for putting into
perspective the substantive value of published research. Appendices A and B include two
useful resources. One is a list of the common terms and definitions related to measure-
ment. The other is a list of potentially useful Web resources. This list contains Web sites
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that are either primarily educational or
have links to other resources such as sta-
tistical software. In addition, some sug-
gested additional readings are listed in
Appendix C.

ORIGINS OF STATISTICS

The term statistic simply means “numeric
data.” In contrast, the field of statistics is
a human enterprise encompassing a wide
range of methods that allow us to learn
from experience (8,9). Tied to the emer-
gence of the scientific method in the
16th and 17th centuries, statistical think-
ing involves deduction of explanations of
reality and framing of these explanations
into testable hypotheses. The results of
these tests are used to reach conclusions
(inferences) about future outcomes on the
basis of past experiences.

Statistical thinking is probabilistic. For
example, most radiologists are familiar
with the notion that a P value of less than
.05 represents a statistically significant re-
sult. Few understand that .05 is an arbi-
trary threshold. While performing agron-
omy research, Sir Ronald Fisher helped to
establish the P value cutoff level of .05
(commonly referred to as the ! level) in
the early part of the 20th century. Fisher
(10) was testing hypotheses about appro-
priate levels of fertilizer for potato plants
and needed a basis for decision making.
Today we often use this same basis for
testing hypotheses about appropriate pa-
tient care.

The health profession gradually recog-
nized that statistics were as applicable to
people as they were to potato plants. By
the 1960s, clinicians and health policy
leaders were asking for statistical evi-
dence that an intervention was effective
(11). Over the past several decades, the
use of statistics in medical journals has
increased both in quantity and in sophis-
tication (12,13). Advances in computers
and statistical software have paralleled
this increase. However, the benefits of
easy access to the tools of statistical anal-
ysis can be overshadowed by the costs
associated with misapplication of statis-
tical methods. Statistical software makes
it far too easy to conduct multiple tests of
data without prior hypotheses (the so-
called data-mining phenomenon) or to
report overly precise results that portend
a false sense of accuracy. There is also the
potential for errors in statistical software
and the ever-present risk that researchers
will fail to take the time to carefully look
at the raw data (14). These issues can
result in poor science, erroneous or mis-

leading results, and inappropriate patient
care. The benefits of statistical software
generally far outweigh the costs, but
proper measurement, study design, and
good judgment should prevail over the
ease with which many analyses can be
conducted. What follows is an introduc-
tion to the basics of measurement.

MEASUREMENTS: BUILDING
BLOCKS OF STATISTICS

The interpretation and use of statistics
require a basic understanding of the fun-
damentals of measurement. Although
most readers of the radiology literature
will recognize common terms such as
variables, association, and causation, few
are likely to understand how these terms
interrelate with one another to frame the
structure of a statistical analysis. What
follows is a brief introduction to the prin-
ciples and vocabulary of measurement.

Operationalization

Emmet (15) wrote, “We must beware
always of thinking that because a word
exists the ’thing’ for which that word is
supposed to stand necessarily exists too.”

Measurement begins with the assign-
ment of numbers to events or things to
help us describe reality. Measurements
range from the obvious (eg, diameter,
length, time) to the more difficult (eg,
patient satisfaction, quality of life, pain),
but all are something we can quantify or
count. This process is called operational-
ization. Operationalized concepts range
from well-established measures such as
lesion diameter in millimeters to less well-
defined measures such as image quality,
contrast agent toxicity, patient comfort,
and imaging cost.

If this appears somewhat abstract, con-
sider the following three points: First, re-
searchers can operationalize anything
that exists (16), but some measures will
be more imprecise (quality of life) than
others (diameter). Second, since there is
likely to be more than one way to opera-
tionalize a concept, the choice of the best
way may not be obvious. Third, the radi-
ology profession and the research it gen-
erates are saturated with conceptualiza-
tions that have been operationalized,
some more successfully than others.

Variables

Variables represent measurable indica-
tors of a characteristic that can take on
more than one value from one observa-
tion to the next. A characteristic may

have a different value in different people,
in different places, or at different times.
Such variables are often referred to as
random variables when the value of a
particular outcome is determined by
chance (ie, by means of random sam-
pling) (17). Since many characteristics
are measured imperfectly, we should not
expect complete congruence between a
measure and truth. Put simply, any mea-
surement has an error component.

If a measure does not take on more
than one value, it is referred to as a con-
stant. As an example, patient sex is a vari-
able: It can vary between male and fe-
male from one patient to the next.
However, a study of breast imaging is
likely to be limited to female patients. In
this context, sex is no longer a variable in
a statistical sense (we cannot analyze it
because it does not vary). In contrast,
holding the value of one variable con-
stant in order to clarify variations in
other variables is sometimes referred to as
a statistical control. With mammography
as an example, it may be useful to esti-
mate the accuracy of an imaging tech-
nique separately for women with and for
women without dense breast tissue. As
noted previously, however, operational-
izing what is and is not dense breast tis-
sue may not be as simple as it first ap-
pears.

Measurement Scales

There are four levels of data, com-
monly referred to as nominal, ordinal,
interval, and ratio data. Nominal data
classifies objects according to type or
characteristic but has no logical order.
With imaging technology as an example,
ultrasonography, magnetic resonance
(MR) imaging, computed tomography,
and conventional radiography are each
exclusive technologic categories, gener-
ally without logical order. Other com-
mon examples would be sex, race, and a
radiologist’s primary subspecialty. Ordi-
nal data also classify objects according to
characteristic, but the categories can take
on some meaningful order. The Ameri-
can College of Radiology Breast Imaging
Reporting and Data System, or BI-RADS,
classification system for final assessment
is a good example of an ordinal scale. The
categories are mutually exclusive (eg, a
finding cannot be both “benign” and a
“suspicious abnormality”), have some
logical order (ranked from “negative” to
“highly suggestive of malignancy”), and
are scaled according to the amount of a
particular characteristic they possess
(suspicion of malignancy). Nominal
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and ordinal data are also referred to as
qualitative variables, since their under-
lying meaning is nonnumeric.

Interval data classify objects according
to type and logical order, but the differ-
ences between levels of a measure are
equal (eg, temperature in degrees Celsius,
T scores reported for bone mineral den-
sity). Ratio data are the same as interval
data but have a true zero starting point.
As noted in the examples above, the val-
ues of degrees Celsius and T score can
take on both positive and negative num-
bers. Examples of ratio data would be
heart rate, percentage vessel stenosis, and
respirations per minute. Interval and ra-
tio data are also referred to as quantita-
tive variables, since they have a direct
numeric interpretation. In most analyses,
it does not matter whether the data are
interval or ratio data.

Continuous and Discrete Variables

Variables such as weight and diameter
are measured on a continuous scale,
meaning they can take on any value
within a given interval or set of intervals.
As a general rule of thumb, if a subdivi-
sion between intervals makes sense, the
data are continuous. As an example, a
time interval of minutes can be further
divided into seconds, milliseconds, and
an infinite number of additional frac-
tions. In contrast, discrete variables such
as sex, the five-point BI-RADS final assess-
ment scale, race, and number of children
in a household have basic units of mea-
surement that cannot be divided (one
cannot have 1.5 children).

Reliability and Validity

Measurement accuracy is directly re-
lated to reliability and validity. Reliabil-
ity is the extent to which the repeated use
of a measure yields the same values when
no change has occurred. Therefore, reli-
ability can be evaluated empirically. Poor
reliability negatively affects all studies. As
an example, reliability can depend on
who performs the measurement and
when, where, how, and from whom the
data are collected.

Validity is the extent to which a mea-
sure is an accurate representation of the
concept it is intended to operationalize.
Validity cannot be confirmed empiri-
cally—it will always be in question. Al-
though there are several different con-
ceptualizations of validity, the following
provides a brief overview. Predictive va-
lidity refers to the ability of an indicator
to correctly predict (or correlate with) an
outcome (eg, imaged abnormal lesion

and subsequent malignancy). Content
validity is the extent to which the indi-
cator reflects the full domain of interest
(eg, tumor shrinkage may be indicated by
tumor width, height, or both). Construct
validity is the degree to which one mea-
sure correlates with other measures of the
same concept (eg, does a positive MR
study for multiple sclerosis correlate with
physical examination findings, patient
symptoms, or laboratory results?). Face
validity evaluates whether the indicator
appears to measure the concept. As an
example, it is unlikely that an MR study
of the lumbar spine will facilitate a diag-
nosis for lost memory and disorientation.

Association

The connection between variables is
often referred to as association. Associa-
tion, also known as covariation, is exhib-
ited by measurable changes in one vari-
able that occur concurrently with
changes in another variable. A positive
association is represented by changes in
the same direction (eg, heart rate in-
creases as physical activity increases).
Negative association is represented by
concurrent changes in opposite direc-
tions (hours per week spent exercising
and percentage body fat). Spurious asso-
ciations are associations between two
variables that can be better explained by
a third variable. As an example, if after
taking medication for a common cold for
10 days the symptoms disappear, one
could assume that the medication cured
the illness. Most of us, however, would
probably agree that the change is better
explained in terms of the normal time
course of a common cold rather than a
pharmacologic effect.

Causation

There is a difference between the deter-
mination of association and that of cau-
sation. Causation cannot be proved with
statistics. With this caveat in mind, sta-
tistical techniques are best used to ex-

plore (not prove) connections between
independent and dependent variables. A
dependent variable (sometimes called
the response variable) is a variable that
contains variations for which we seek an
explanation. An independent variable is
a variable that is thought to affect (cause)
changes in the dependent variable. Cau-
sation is implied when statistically signif-
icant associations are found between an
independent and a dependent variable,
but causation can never be truly proved.
Proof is always an exercise in logical de-
duction tempered with a degree of uncer-
tainty (18,19), even in experimental de-
signs (such as randomized controlled
trials).

Statistical techniques provide evidence
that a relationship exists between inde-
pendent and dependent variables through
the use of significance testing and mea-
sures of the strength of association. This
evidence must be supported by the theo-
retical basis and logic of the research. The
Table presents a condensed list of ele-
ments necessary for a claim of causation.
The first attempt to provide an epidemi-
ologic method for evaluating causation
was performed by A. G. Hill and adapted
for the well-known U.S. Surgeon Gener-
al’s report, Smoking and Health (1964)
(18,19). The elements described in the
Table serve to remind us that causation is
neither a simple exercise nor a direct
product of statistical significance. This is
why many believe the optimal research
technique to establish causation is to use
a randomized controlled experiment.

MAINTAINING PERSPECTIVE

Rothman and Greenland (19) wrote,
“The tentativeness of our knowledge
does not prevent practical applications,
but it should keep us skeptical and criti-
cal, not only of everyone else’s work but
of our own as well.”

A basic understanding of measurement
will enable radiologists to better under-

Required Elements for Causation

Element Explanation

Association Do the variables covary empirically? Strong associations are more likely
to be causal than are weak associations.

Precedence Does the independent variable vary before the effect exhibited in the
dependent variable?

Nonspuriousness Can the empirical correlation between two variables be explained
away by the influence of a third variable?

Plausibility Is the expected outcome biologically plausible and consistent with
theory, prior knowledge, and results of other studies?
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stand and put into perspective the sub-
stantive importance of published re-
search. Maintaining perspective not only
requires an understanding that all ana-
lytic studies operate under a cloud of im-
perfect knowledge, but it also requires
sufficient insight to recognize that statis-
tical sophistication and significance test-
ing are tools, not ends in themselves. Sta-
tistical techniques, however, are useful in
providing summary measures of con-
cepts and helping researchers decide,
given certain assumptions, what is mean-
ingful in a statistical sense (more about
this in future articles). As new techniques
are presented in this series, readers
should remind themselves that statistical
significance is meaningless without clin-
ical significance.

WHAT COMES NEXT

This introduction to measurement will
be followed by a series of articles on basic
biostatistics. The series will cover topics
on descriptive statistics, probability, sta-
tistical estimation and hypothesis test-
ing, sample size, and power. There will
also be more advanced topics introduced,
such as correlation, regression modeling,
statistical agreement, measures of risk
and accuracy, technology assessment, re-
ceiver operating characteristic curves,
and bias. Each article will be written by
experienced researchers using radiologic
examples to present a nontechnical ex-
planation of a statistical topic.

APPENDIX A: KEY TERMS

Below is a list of the common terms and
definitions related to measurement.

Abstract concept.—The starting point for
measurement, an abstract concept is best
understood as a general idea in linguistic
form that helps us describe reality.

Association.—An association is a measur-
able change in one variable that occurs con-
currently with changes in another variable.
Positive association is represented by change
in the same direction. Negative association is
represented by concurrent changes in oppo-
site directions.

Constant.—A constant is an attribute of a
concept that does not vary.

Construct validity.—Construct validity is
the degree to which one measure correlates
with other measures of the same abstract
concept.

Content validity.—Content validity is the
extent to which the indicator reflects the
full domain of interest.

Continuous variable.—This type of variable
is a measure that can take on any value

within a given interval or set of intervals: an
infinite number of possible values.

Dependent variable.—The value of the de-
pendent variable depends on variations in
another variable.

Discrete variable.—This type of variable is
a measure that is represented by a limited
number of values.

Face validity.—Face validity evaluates
whether the indicator appears to measure
the abstract concept.

Independent variable.—The independent
variable can be manipulated to affect varia-
tions or responses in another variable.

Interval data.—These variables classify ob-
jects according to type and logical order but
also require that differences between levels
of a category are equal.

Nominal data.—These are variables that
classify objects according to type or charac-
teristic.

Operationalize.—This is the process of cre-
ating a measure of an abstract concept.

Ordinal data.—These are variables that
classify objects according to type or kind
but also have some logical order.

Predictive validity.—This is the ability of
an indicator to correctly predict (or corre-
late with) an outcome.

Random variable.—This type of variable is a
measure where any particular value is based
on chance by means of random sampling.

Ratio data.—These variables have a zero
starting point and classify objects according
to type and logical order but also require
that differences between levels of a category
be equal.

Reliability.—Reliability is the extent to
which the repeated use of a measure yields
the same value when no change has occurred.

Spurious association.—This is an association
between two variables that can be better ex-
plained by or depends greatly on a third vari-
able.

Statistical control.—This refers to holding
the value of one variable constant in order
to clarify associations among other vari-
ables.

Statistical inference.—This is the process
whereby one reaches a conclusion about a
population on the basis of information ob-
tained from a sample drawn from that pop-
ulation. There are two such methods, statis-
tical estimation and hypothesis testing.

Validity.—Validity is the extent to which
a measure accurately represents the abstract
concept it is intended to operationalize.

Variable.—A variable is a measure of a
concept that can take on more than one
value from one observation to the next.

APPENDIX B: WEB
RESOURCES

The following is a list of links to general
statistics resources available on the Web (ac-
cessed May 14, 2001).

www.StatPages.net
www.stats.gla.ac.uk
The following Web links are sources of

statistics help (accessed May 14, 2001).
BMJ Statistics at Square One: www.bmj

.com/statsbk/
The Little Handbook of Statistical Prac-

tice: www.tufts.edu/"gdallal/LHSP.HTM
Rice Virtual Lab in Statistics: www.ruf.rice

.edu/"lane/rvls.html
Concepts and Applications of Inferential

Statistics: faculty.vassar.edu/"lowry/webtext
.html

StatSoft Electronic Textbook: www.statsoft
.com/textbook/stathome.html

Hypertext Intro Stat Textbook: www
.stat.ucla.edu/textbook/

Introductory Statistics: Concepts, Models,
and Applications: www.psychstat.smsu.edu/
sbk00.htm

Statnotes: An Online Textbook: www2
.chass.ncsu.edu/garson/pa765/statnote.htm

Research Methods Knowledge Base: trochim
.human.cornell.edu/kb/

The following is a list Web links to statis-
tical software (accessed May 14, 2001).

Stata Software (links to software provid-
ers): www.stata.com/links/stat_software.html

EpiInfo, free software downloads avail-
able from the Centers for Disease Control
and Prevention: www.cdc.gov/epiinfo/

APPENDIX C: SUGGESTED
GENERAL READINGS

The following is a list of suggested read-
ings.

Pagano M, Gauvreau K. Principles of bio-
statistics. Belmont, Calif: Duxbury, 1993.

Motulsky H. Intuitive biostatistics. New
York, NY: Oxford University Press, 1995.

Rothman KJ, Greenland S, eds. Modern
epidemiology. Philadelphia, Pa: Lippincott-
Raven, 1998.

Gordis L, ed. Epidemiology. Philadelphia,
Pa: Saunders, 1996.

Oxman AD, Sackett DL, Guyatt GH. Us-
ers’ guides to the medical literature. I. How
to get started. The Evidence-Based Medicine
Working Group. JAMA 1993; 270:2093–2095.
[This is from an ongoing series through year
2000.]
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Describing Data: Statistical
and Graphical Methods1

An important step in any analysis is to describe the data by using descriptive and
graphic methods. The author provides an approach to the most commonly used
numeric and graphic methods for describing data. Methods are presented for
summarizing data numerically, including presentation of data in tables and calcu-
lation of statistics for central tendency, variability, and distribution. Methods are also
presented for displaying data graphically, including line graphs, bar graphs, histo-
grams, and frequency polygons. The description and graphing of study data result
in better analysis and presentation of data.
© RSNA, 2002

A primary goal of statistics is to collapse data into easily understandable summaries. These
summaries may then be used to compare sets of numbers from different sources or to
evaluate relationships among sets of numbers. Later articles in this series will discuss
methods for comparing data and evaluating relationships. The focus of this article is on
methods for summarizing and describing data both numerically and graphically. Options
for constructing measures that describe the data are presented first, followed by methods
for graphically examining your data. While these techniques are not methodologically
difficult, descriptive statistics are central to the process of organizing and summarizing
anything that can be presented as numbers. Without an understanding of the key con-
cepts surrounding calculation of descriptive statistics, it is difficult to understand how to
use data to make comparisons or draw inferences, topics that will be discussed extensively
in future articles in this series.

In this article, five properties of a set of numbers will be discussed. (a) Location or central
tendency: What is the central or most typical value seen in the data? (b) Variability: To
what degree are the observations spread or dispersed? (c) Distribution: Given the center
and the amount of spread, are there specific gaps or concentrations in how the data
cluster? Are the data distributed symmetrically or are they skewed? (d) Range: How extreme
are the largest and smallest values of the observations? (e) Outliers: Are there any obser-
vations that do not fit into the overall pattern of the data or that change the interpretation
of the location or variability of the overall data set?

The following tools are used to assess these properties: (a) summary statistics, including
means, medians, modes, variances, ranges, quartiles, and tables; and (b) plotting of the
data with histograms, box plots, and others. Use of these tools is an essential first step to
understand the data and make decisions about succeeding analytic steps. More specific
definitions of these terms can be found in the Appendix.

DESCRIPTIVE STATISTICS

Frequency Tables

One of the steps in organizing a set of numbers is counting how often each value occurs.
An example would be to look at diagnosed prostate cancers and count how often in a
2-year period cancer is diagnosed as stage A, B, C, or D. For example, of 236 diagnosed
cancers, 186 might be stage A, 42 stage B, six stage C, and two stage D. Because it is easier
to understand these numbers if they are presented as percentages, we say 78.8% (186 of
236) are stage A, 17.8% (42 of 236) are stage B, 2.5% (six of 236) are stage C, and 0.9% (two
of 236) are stage D. This type of calculation is performed often, and two definitions are
important. The frequency of a value is the number of times that value occurs in a given
data set. The relative frequency of a value is the proportion of all observations in the data
set with that value. Cumulative frequency is obtained by adding relative frequency for one
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value at a time. The cumulative fre-
quency of the first value would be the
same as the relative frequency and that of
the first two values would be the sum of
their relative frequencies, and so on. Fre-
quency tables appear regularly in Radiol-
ogy articles and other scientific articles.
An example of a frequency table, includ-
ing both frequencies and percentages, is
shown in Table 1. In the section of this
article about graphic methods, histo-
grams are presented. They are a graphic
method that is analogous to frequency
tables.

Measurement of the Center of the
Data

The three most commonly used mea-
sures of the center of the data are the
mean, median, and mode. The mean (of-
ten referred to as the average) is the most
commonly used measure of center. It is
most often represented in the literature
as x! . The mean is the sum of the values of
the observations divided by the number
of observations. The median is the mid-
point of the observations, when arranged
in order. Half of the observations in a
data set lie below the median and half lie
above the median. The mode is the most
frequent value. It is the value that occurs

most commonly in the data set. In a data
set like the one in Figure 1, the mean,
median, and mode will be different num-
bers. In a perfectly normal distribution,
they will all be the same number. A nor-
mal distribution is a commonly occur-
ring symmetric distribution, which is de-
fined by the familiar bell-shaped curve,
that includes a set percentage of data be-
tween the center and each standard devi-
ation (SD) unit.

When a median is used, the data are
arranged in order and the middle obser-
vation is selected. If the number of obser-
vations is even, there will be a middle
pair of values, and the median will be the
point halfway between those two values.
The numbers must be ordered when the
median is selected, and each observation
must be included. With a data set of 4, 4,
5, 5, 6, 6, 8, and 9, the median is 5.5.
However, if values represented by the
data were listed rather than listing the
value of each observation, the median
would be erroneously reported as 6. Fi-
nally, if there are 571 observations, there
is a method to avoid counting in from
the ends. Instead, the following formula
is used: If there are n observations, cal-
culate (n ! 1)/2. Arrange the observa-
tions from smallest to largest, and count

(n ! 1)/2 observations up from the bot-
tom. This gives the median. In real life,
many statistical programs (including Ex-
cel; Microsoft, Redmond, Wash), will give
the mean, median, and mode, as well as
many other descriptive statistics for data
sets.

To look for the mode, it is helpful to
create a histogram or bar chart. The most
common value is represented by the
highest bar and is the mode. Some distri-
butions may be bimodal and have two
values that occur with equal frequency.
When no value occurs more than once,
they could all be considered modes.
However, that does not give us any extra
information. Therefore, we say that these
data do not have a mode. The mode is
not used often because it may be far from
the center of the data, as in Figure 1, or
there may be several modes, or none. The
main advantage of the mode is that it is
the only measure that makes sense for
variables in nominal scales. It does not
make sense to speak about the median or
mean race or sex of radiologists, but it
does make sense to speak about the most
frequent (modal) race (white) or sex
(male) of radiologists. The median is de-
termined on the basis of order informa-
tion but not on the basis of the actual
values of observations. It does not matter
how far above or below the middle a value
is, but only that it is above or below.

The mean comprises actual numeric
values, which may be why it is used so
commonly. A few exceptionally large or
small values can significantly affect the
mean. For example, if one patient who
received contrast material before com-
puted tomography (CT) developed a se-
vere life-threatening reaction and had to
be admitted to the intensive care unit,
the cost for care of that patient might be
several hundred thousand dollars. This
would make the mean cost of care asso-
ciated with contrast material–enhanced
CT much higher than the median cost
because without such an episode costs
might only be several hundred dollars.
For this reason, it may be most appropri-
ate to use the median rather than the
mean for describing the center of a data
set if the data contain some very large or
very small outlier values or if the data are
not centered (Fig 1).

“Skewness” is another important term.
While there is a formula for calculating
skew, which refers to the degree to which
a distribution is asymmetric, it is not
commonly used in data analysis. Data
that are skewed right (as seen in Fig 1) are
common in biologic studies because many
measurements involve variables that have

TABLE 1
Frequencies, Relative Frequencies, and Cumulative Frequencies of Cancer
Staging Distribution

Cancer
Stage Frequency

Cumulative
Frequency Percentage

Relative Frequency
(proportion)

A 186 .788 78.8 .79
B 42 .967 17.9 .18
C 6 .992 2.5 .025
D 2 1.0 0.9 .009

Figure 1. Line graph shows the mean, median, and mode of a skewed distribution. In a
distribution that is not symmetric, such as this one, the mean (arithmetic average), the median
(point at which half of the data lie above and half lie below), and the mode (most common value
in the data) are not the same.

Volume 225 ! Number 3 Describing Data: Statistical and Graphical Methods ! 623

R
a

d
io

lo
gy



a natural lower boundary but no definitive
upper boundary. For example, hospital
length of stay can be no shorter than 1 day
or 1 hour (depending on the units used by
a given hospital), but it could be as long as
several hundred days. The latter would re-
sult in a distribution with more values be-
low some cutoff and then a few outliers
that create a long “tail” on the right.

Measuring Variability in the Data

Measures of center are an excellent
starting point in summarizing data, but
they usually do not “tell the full story”
and can be misleading if there is no in-
formation about the variability or spread
of the data. An adequate summary of a
set of data requires both a measure of
center and a measure of variability. Just
as with the center, there are several op-
tions for measuring variability. Each
measure of variability is most often asso-
ciated with one of the measures of center.
When the median is used to describe the
center, the variability and general shape
of the data distribution are described by
using percentiles. The xth percentile is
the value at which x percent of the data
lie below that percentile and the rest lie
above it; therefore, the median is also the
50th percentile. As seen in the box plot
(Fig 2), the 25th and 75th percentiles,
also known as the lower and upper quar-
tiles, respectively, are often used to de-
scribe data (1).

Although the percentiles and quartiles
used for creating box plots are useful and
simple, they are not the most common
measures of spread. The most common
measure is the SD. The SD (and the re-

lated variance) is used to describe spread
around the center when the center is ex-
pressed as a mean. The formula for vari-
ance would be written as

¥ "obs ! mean#2

no. of obs ,

where $ represents a summation of all
the values, and obs means observations.
Squaring of the differences results in all
positive values. Then the SD is

!¥ "obs ! mean#2

no. of obs ,

the square root of the variance. It is help-
ful to think of the SD as the average dis-
tance of observations from the mean. Be-
cause it is a distance, it is always positive.
Large outliers affect the SD drastically,
just as they do the mean. Occasionally,
the coefficient of variation—the SD or
mean multiplied by 100 to get a percent-
age value—is used. This can be useful if

the interest is in the percentage variation
rather than the absolute value in numeric
terms. Kaus and colleagues (2) presented
an interesting table in their study. Table

TABLE 2
Intra- and Interobserver Variability in MR Reading: Automated versus
Manual Method

Segmented Volume and
Tumor Histologic Type

Manual Method Automated Method

Intraobserver Interobserver Intraobserver Interobserver

Brain
Meningioma 0.42 % 0.03 4.93 % 1.75 0.36 % 0.45 1.84 % 0.65
Low-grade glioma 1.79 % 1.53 6.31 % 2.85 1.44 % 1.33 2.71 % 1.68

Tumor
Meningioma 1.58 % 0.98 7.08 % 2.18 0.66 % 0.72 2.66 % 0.38
Low-grade glioma 2.08 % 0.78 13.61 % 2.21 2.06 % 1.73 2.97 % 1.58

Note.—Data are the mean coefficient of variation percentage plus or minus the SD.
(Adapted and reprinted, with permission, from reference 2.)

TABLE 3
Standard Scores and Corresponding
Percentiles

Standard Score Percentile

&3.0 0.13
&2.5 0.62
&2.0 2.27
&1.5 6.68
&1.0 15.87
&0.5 30.85

0.0 50.00
0.5 69.15
1.0 84.13
1.5 93.32
2.0 97.73
2.5 99.38
3.0 99.87

Figure 2. Box plot demonstrates low varia-
tion. A high-variation box plot would be much
taller. The horizontal line is the median, the
ends of the box are the upper and lower quar-
tiles, and the vertical lines are the full range of
values in the data. (Reprinted, with permis-
sion, from reference 1.)

Figure 3. Line graph shows change in MR signal intensity in the
cerebrospinal fluid (CSF) collected during oxygen inhalation over
time. Signal intensity in the quadrigeminal plate cistern increases
more gradually, and equilibration is reached at 15–20 minutes after
the start of oxygen inhalation. (Reprinted, with permission, from
reference 3.)
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2 shows their data on the intra- and in-
terobserver variability in the reading of
magnetic resonance (MR) images with
automated and manual methods.

Normal Distribution and Standard
Scores

Once a mean and SD are calculated,
they can be used to further simplify de-
scription of data or to create statistics
that can be compared across data sets.
One common measure is the standard
score. With the standard score, data are
assumed to come from a normal distribu-
tion, a symmetric bell-shaped distribu-
tion. In a normal distribution, 68% of all
observations are within 1 SD of the mean
(34% above the mean and 34% below).
Another 27% are between 1 and 2 SDs;
therefore, 95% of all observations are
within 2 SDs of the mean. A total of

99.7% are within 3 SDs of the mean;
therefore, any normal curve (or histo-
gram that represents a large set of data
drawn from a normal distribution) is
about 6 SDs wide. Two SDs from the
mean is often used as a cutoff for the
assignment of values as outliers. This
convention is related to the common use
of 95% confidence intervals and the se-
lection of confidence for testing of a hy-
pothesis as 95% (these concepts will be
defined in a future article). The use of 2
SDs from the mean in normally distrib-
uted data ensures that 95% of the data
are included. As can be seen, the SD is the
common measure of variability for data
from normal distributions. These data
can be expressed as standard scores,
which are a measure of SD units from the
mean. The standard score is calculated as

(OV & M)/SD, where OV is the observa-
tion value and M is the mean. A standard
score of 1 corresponds to the 84th per-
centile of data from a normal distribu-
tion. Standard scores are useful because if
the data are drawn from a normal distri-
bution, regardless of the original mean
and SD, each standard score corresponds
to a specific percentile. Table 3 shows
percentiles that correspond to some stan-
dard scores.

GRAPHICAL METHODS FOR
DATA SUMMARY

Line and Bar Graphs

It is often easier to understand and in-
terpret data when they are presented
graphically rather than descriptively or as

Figure 4. Bar graphs. (a) Use of a scale with a maximum that is only slightly higher than the highest value in the data shows the differences
between the groups more clearly than does (b) use of a scale with a maximum that is much higher than the highest value.

Figure 5. Bar graph shows the underestimation rate for lesion size with
vacuum-assisted and large-core needle biopsy. Underestimation rates
were lower with the vacuum-assisted device. It is helpful to label the bars
with the value. (Reprinted, with permission, from reference 4.) Figure 6. Bar graph shows the diagnostic adequacy of high-spatial-

resolution MR angiography with a small field of view and that with a
large field of view for depiction of the segmental renal arteries. (Re-
printed, with permission, from reference 5.)
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a table. Line graphs are most often used
to show the behavior of one variable over
time. Time appears on the horizontal axis
and the variable of interest on the verti-
cal axis. Figure 3 is an example of a line
graph. The variable is MR signal intensity
in the cerebrospinal fluid collected dur-
ing oxygen inhalation. It is apparent from
this graph that signal intensity within the
quadrigeminal plate cistern increases more
gradually than that within the suprasellar
cistern, which was the conclusion drawn
by the authors (3).

When you look at graphs, it is impor-
tant to examine both the horizontal and
vertical axis scales. Selection of the scale
to be used may influence how the reader
interprets the graph. This can be seen in
Figure 4, which depicts bar graphs.

Bar graphs are another common way
to display data. They are used for com-
paring the value of multiple variables. In
many cases, multiple bar graphs will ap-
pear in the same figure, such as in Figures
5 and 6. Figure 5 shows the diagnostic
underestimation rate for three categories
of lesion size with vacuum-assisted and
large-core needle biopsies. This bar chart
is presented with a percentage rate on the
y axis and the categories on the x axis (4).
Figure 6 is similar and shows the diagnos-
tic adequacy of high-spatial-resolution
MR angiography with a small field of
view compared with that with a large
field of view for depiction of the segmen-
tal renal arteries. In this case, the y axis
represents the number of cases and the
percentages appeared in the figure cap-
tion (5). Bars may be drawn either verti-
cally, as in Figures 5 and 6, or horizon-
tally. They may be drawn to be touching
each other or to be separate. It is impor-
tant that the width of the bars remains
consistent so that one bar does not ap-
pear to represent more occurrences be-
cause it has a larger area.

Histograms and Frequency
Polygons

Histograms look somewhat like bar
charts, but they serve a different purpose.
Rather than displaying occurrence in
some number of categories, a histogram
is intended to represent a sampling dis-
tribution. A sampling distribution is a
representation of how often a variable
would have each of a given set of values if
many samples were to be drawn from the
total population of that variable. The
bars in a histogram appear in a graph
where the y axis is frequency and the x
axis is marked in equal units. Remember
that a bar chart does not have x-axis

units. When a program automatically
creates a histogram, it creates x-axis units
of equal size. The histogram is analogous
to the frequency table discussed earlier.
Figure 7 shows a histogram, although it
was called a bar chart in the original fig-
ure caption (6). This figure represents the
distribution of calcific area among partic-
ipants and has equal units on the x axis,
which makes it a histogram.

Frequency polygons are a less used al-
ternative to histograms. Figure 8a shows
a histogram that might represent the dis-
tribution of the mean partition coeffi-
cients in a number of healthy individu-
als. The line in the figure is created by
connecting the middle of each of the his-
togram bars. The figure represented by
that line is called a frequency polygon.
The frequency polygon is shown in Fig-
ure 8b. In Figure 8a, both the histogram
and the frequency polygon are shown on

the same graph. Most often, one or the
other appears but not both.

Stem and Leaf Plots

Another graphic method for represent-
ing distribution is known as the stem and
leaf plot, which is useful for relatively
small data sets, as seen in many radio-
logic investigations. With this approach,
more of the information from the origi-
nal data is preserved than is preserved
with the histogram or frequency poly-
gon, but a graphic summary is still pro-
vided. To make a stem plot, the first digits
of the data values represent the stems.
Stems appear vertically with a vertical
line to their right, and the digits are
sorted into ascending order. Then the
second digit of each value occurs as a leaf
to the right of the proper stem. These
leaves should also be sorted into ascend-

TABLE 4
Data for Body Weight of 10 Patients Used to Construct Stem and Leaf Plot

Volunteer No./
Age (y)/Sex

Body Weight
(kg)

Height
(cm)

'QF (gray tones
per pixel)*

c (gray tones per pixel
per milliliter)

1/27/F 76 178 4.7 0.049
2/32/F 61 173 3.3 0.035
3/31/M 83 181 3.8 0.040
4/28/M 85 180 4.0 0.042
5/44/M 103 189 4.6 0.048
6/32/M 72 179 3.4 0.036
7/23/M 78 174 5.5 0.058
8/26/F 72 179 4.8 0.050
9/28/M 80 180 3.5 0.037
10/23/F 74 177 3.6 0.038

Note.—The mean values % SEM were as follows: age, 29 years % 2; body weight, 78 kg % 3;
height, 179 cm % 1; 'QF, 4.1 gray tones per pixel % 0.2; c ('QF/V), 0.043 gray tones per pixel
per milliliter % 0.003. (Adapted and reprinted, with permission, from reference 1).

* Ninety-five milliliters of saline solution was instilled.

Figure 7. Histogram represents distribution of calcific area. Labels on
the x axis indicate the calcific area in square millimeters for images with
positive findings. (Reprinted, with permission, from reference 6.)
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ing order. In a simple example, Heverha-
gen and colleagues (1) used the body
weight in kilograms of 10 patients. The
original data appear in Table 4. Figure 9
shows the making of a stem plot from
these data. The stem and leaf plot looks
like a histogram with horizontal bars
made of numbers. The plot’s primary ad-
vantage is that all of the actual values of
the observations are retained. Stem and
leaf plots do not work well with very

large data sets because there are too many
leaves, which makes it difficult both to
read and to fit on a page.

Box Plots

The final graphic method presented in
this article is the box plot. The box plot
shows the distribution of the data and is
especially useful for comparing distribu-
tions graphically. It is created from a set
of five numbers: the median, the 25th
percentile or lower quartile, the 75th per-
centile or upper quartile, the minimum
data value, and the maximum data value.
The horizontal line in the middle of the
box is the median of the measured val-
ues, the upper and lower sides of the box
are the upper and lower quartiles, and
the bars at the end of the vertical lines are
the data minimum and maximum val-
ues.

Tombach and colleagues (7) used box
plots in their study of renal tolerance of a
gadolinium chelate to show changes over
time in the distribution of values of se-
rum creatinine concentration and creati-
nine clearance across different groups of
patients. Some of these box plots are
shown in Figure 10. They clearly demon-
strate the changing distribution and the
difference in change between patient
groups.

In conclusion, a statistical analysis typ-
ically requires statistics in addition to a
measure of location and a measure of
variability. However, the plotting of data
to see their general distribution and the
computing of measures of location and
spread are the first steps in being able to
determine the interesting relationships

that exist among data sets. In this article,
methods have been provided for calculat-
ing the data center with the mean, me-
dian, or mode and for calculating data
spread. In addition, several graphic
methods were explained that are useful
both when exploring and when present-
ing data. By starting with describing and
graphing of study data, better analysis
and clear presentation of data will result;
therefore, descriptive and graphic meth-
ods will improve communication of im-
portant research findings.

APPENDIX

The following is a list of the common terms
and definitions related to statistical and
graphic methods of describing data.

Coefficient of variation.—SD divided by the
mean and then multiplied by 100%.

Descriptive statistics.—Statistics used to
summarize a body of data. Contrasted with
inferential statistics.

Frequency distribution.—A table that shows
a body of data grouped according to nu-
meric values.

Frequency polygon.—A graphic method of
presenting a frequency distribution.

Histogram.—A bar graph that represents a
frequency distribution.

Inferential statistics.—Use of sample statis-
tics to infer characteristics about the popu-
lation.

Mean.—The arithmetic average for a
group of data.

Median.—The middle item in a group of
data when the data are ranked in order of
magnitude.

Mode.—The most common value in any
distribution.

Figure 8. Representative histogram and frequency polygon constructed from hypothetical data. Alternate ways of showing the distribution of a
set of data are shown (a) with both the histogram and the frequency polygon depicted or (b) with only the frequency polygon depicted.

Figure 9. Stem and leaf plot constructed from
data in Table 4. Step one shows construction of
the stem, and step 2 shows construction of the
leaves. These steps result in a sideways histogram
display of the data distribution, which preserves
the values of the data used to construct it. The
number 9 appears on the stem as a place saver;
the lack of digits to the right of this stem number
indicates that no values began with this number
in the original data.
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Nominal data.—Data with items that can
only be classified into groups. The groups
cannot be ranked.

Normal distribution.—A bell-shaped curve
that describes the distribution of many phe-
nomena. A symmetric curve with the high-
est value in the center and with set amounts
of data on each side with the mathematical
property that the logarithm of its probabil-
ity density is a quadratic function of the
standardized error.

Percentage distribution.—A frequency dis-
tribution that contains a column listing the
percentage of items in each class.

Quartile.—Value below which 25% (lower
quartile) or 75% (upper quartile) of data lie.

Sample.—A subset of the population that
is usually selected randomly. Measures that
summarize a sample are called sample sta-
tistics.

Sampling distribution.—The distribution
actually seen (often represented with a his-
togram) when data are drawn from an un-
derlying population.

Standard deviation.—A measure of disper-
sion, the square root of the average squared
deviation from the mean.

Variance.—The average squared deviation
from the mean, or the square of the SD.
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Probability in Radiology1

In this article, a summary of the basic rules of probability using examples of their
application in radiology is presented. Those rules describe how probabilities may be
combined to obtain the chance of “success” with either of two diagnostic or
therapeutic procedures or with both. They define independence and relate it to the
conditional probability. They describe the relationship (Bayes rule) between sensi-
tivity, specificity, and prevalence on the one hand and the positive and negative
predictive values on the other. Finally, the two distributions most commonly en-
countered in statistical models of radiologic data are presented: the binomial and
normal distributions.
© RSNA, 2002

Radiologists routinely encounter probability in many forms. For instance, the sensitivity of
a diagnostic test is really just a probability. It is the chance that disease (eg, a liver tumor)
will be detected in a patient who actually has the disease. In the process of determining
whether a sequence of successive diagnostic tests (say, both computed tomography [CT]
and positron emission tomography) is a significant improvement over CT alone, radiolo-
gists must understand how those probabilities are combined to give the sensitivity of the
combination.

Similarly, the prevalence of disease such as malignant liver cancer among patients with
cirrhosis is a probability. It is the fraction of patients with a history of cirrhosis who have
a malignant tumor. It can be determined simply from the number of patients with
cirrhosis and the number of patients with both cirrhosis and malignant tumors of the liver
or from the two prevalences.

The likelihood that a patient with a cirrhotic liver and positive CT findings has a
malignant tumor (the positive predictive value [PPV] of CT in this setting) is another
probability. It is determined by combining the prevalence of the disease among patients
with cirrhosis with the sensitivity and specificity of CT.

In all its forms, probabilities obey a single set of rules that determine how they may be
combined; this article presents an outline of these rules. The rules are also found and
explained in greater detail in textbooks of biostatistics, such as that by Rosner (1).

THE EARLIEST DEFINITION OF PROBABILITY

Probability is a numeric expression of the concept of chance, in all its guises. As such, it
obeys the rules of arithmetic and the logic of mathematics.

In its earliest manifestation, probability was a tool for gamblers. The earliest expressions
of probability dealt with simple gambling games such as flipping a coin, rolling a die, or
dealing a single card from the top of a deck. The essential property assumed of such games
was that the possible outcomes were all equally likely. The probability of some event was
proportional to the number of individual outcomes that comprised the event.

In more complicated scenarios, the fundamental outcomes might not be equally likely or
there might be an infinite number of them. In these situations, the definition of a probability
of an event became the fraction of times that the event would occur by chance. That is, it is
the fraction of times in a sufficiently long sequence of trials where the chance of the event was
the same in all trials and was not affected by the results of previous or subsequent trials.

With either definition, counting possible outcomes or measuring the frequency of
occurrence, probability was susceptible to the laws and rules of simple arithmetic. The
simplest rule of all was the rule of addition. Addition of the fraction of patients who have
a single liver tumor that is malignant to the fraction of patients who have a single tumor
that is benign must yield the fraction of patients who have a single tumor, either malig-
nant or benign.
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Algebraically, we express this “addi-
tive” rule for two events, A and B, as the
following: If Prob(A AND B) ! 0, then
Prob(A OR B) ! Prob(A) " Prob(B), where
we use Prob(A) to denote the probability
of A. The condition “Prob(A AND B) ! 0”
is a way of saying that the simultaneous
occurrence of both A and B is impossible.

One consequence of this rule is that
the chance that an event would not hap-
pen is immediately determined by the
chance that it would happen. As “A” and
“NOT A” (the event that A would not
happen) cannot occur simultaneously,
yet one or the other is certain, Prob(A) "
Prob(NOT A) ! 1 or Prob(NOT A) ! 1 #
Prob(A). Thus, the fraction of patients
who do not have a single tumor is just
the complement to the fraction of pa-
tients who do.

The limitation “Prob(A AND B) ! 0” is
necessary, as the rule does not apply
without modification when it is possible
for both events to be true. For instance,
addition of the fraction of patients who
have at least one malignant tumor to the
fraction of patients who have at least one
benign tumor may cause overestimation
of the fraction of patients with tumors,
either malignant or benign. The extent of
the overestimation is given by the frac-
tion of patients who have both benign
and malignant tumors. These patients
were included in the counts for both tu-
mor-type specific fractions but should be
counted only once when patients who
have at least one tumor are counted. This
may be best seen in Figure 1, where the
added shaded areas of A and B yield a
sum greater than the total shaded area.
The area representing the overlap of A
and B must be accounted for.

The required modification to the addi-
tive rule of probabilities is: Prob(A OR B
or [A AND B]) ! Prob(A) " Prob(B) #
Prob(A AND B).

SUBJECTIVE VERSUS
OBJECTIVE PROBABILITIES

Before a coin is flipped, the probability
that it will land heads up is 0.5. After it is
flipped and is seen to have landed heads
up, the probability that it landed heads
up is 1 and that it landed tails up is 0. But
what is the probability that it landed
heads up before anyone saw which face
was up? The face has been determined,
and the probability is either 1 or 0 that it
is heads, though which is not yet known.
Yet, any gambler would be willing to bet
at that point on which face had landed
up in precisely the same way that he or

she would have bet before the coin had
been flipped. The gambler has his or her
own “subjective” probability that the
coin will be face up when observed,
which reflects his or her beliefs concern-
ing the probability before the coin was
flipped. The subjective probabilities obey
the same laws and rules as the “objective”
probabilities in describing future events.
Subjective probabilities may be revised as
one learns more about what else may be
true.

In radiology, before an examination,
the probability that a patient will have an
abnormality detected is a fraction be-
tween 0 and 1. After the procedure and
after the image has been viewed, the
probability is either 1 or 0, depending on
whether an abnormality has been de-
tected. In the interim, after the procedure
but before the image has been viewed,
the subjective probability is the same as
the objective probability was before the
procedure.

CONDITIONAL PROBABILITIES
AND INDEPENDENCE VERSUS
DEPENDENCE

While the probability that a randomly
selected woman has an undetected ma-
lignant breast cancer at least 1 cm in di-
ameter has real meaning, the probability
is not the same for all women. It certainly
is higher for women who have never un-
dergone mammographic screening than
for women who have—all other things
being equal. The probability that a
woman who has never been screened has
such a tumor is called a “conditional”
probability, because it is defined as the
chance that the woman has a 1 cm or

greater tumor, given that the woman has
never been screened. The probability that
a randomly chosen woman has such a
tumor is the number of women with
such tumors divided by the number of all
women. The conditional probability that
a randomly chosen woman who has
never been screened has such a tumor is
defined analogously. It is the number of
women who have never been screened
who have such tumors out of the number
of women who have never been
screened. By using Prob(A!B) to denote
the conditional probability of A (a
woman with a 1 cm or greater breast tu-
mor) given B (she underwent no prior
screening), we have Prob(A!B) ! Prob(A
AND B)/Prob(B).

This forms the basis of the definition of
sensitivity and specificity. If we let A
stand for a positive diagnostic examina-
tion result and B to represent the actual
presence of the disease, then Prob(A!B) is
the sensitivity, the chance of a positive
examination result among individuals
with disease or of a true-positive result.
The definition can also be used to calcu-
late the chances derived from a succes-
sion of diagnostic tests. For instance, if
confirmation of any positive test result,
D1", is required by means of a second
positive test result, D2", then the chance
that we will obtain two positive test re-
sults is given by the “multiplicative” law
of probabilities: Prob(D1" AND D2") !
Prob(D2"!D1") $ Prob(D1").

That is, the chance that both tests have
positive results is a fraction of all second
tests with positive results, once the first
test had a positive result times the chance
that the first test had a positive result.
The rule can be similarly used to calculate

Figure 1. Venn diagram represents the probability of either of two
events based on the probabilities of each and of both. The area of the
shape made by combining A and B is the total of the areas of A and B
less the area where they overlap.
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the chance of two successive negative
findings or any other combination.

Occasionally, the chances for the sec-
ond examination, D2, are unaltered by
the results of the initial examination, D1.
For instance, after the diagnostic image
has been obtained, the interpretation
by a blinded reader, D2, should be un-
affected by the prior interpretation by
another blinded reader, D1, of the same
image. In these situations, the two in-
terpretations are said to be independent
(2).

If A and B are independent, then
Prob(A) ! Prob(A!B) ! Prob(A!NOT B);
that is, the (conditional) chance of A
given that B occurs is the same as the
(conditional) chance of A given that B
does not occur and, as a result, also
equals the (unconditional) chance of A.

A consequence is the multiplicative
law of probabilities for independent
events; namely, if A and B are indepen-
dent, then Prob(A AND B) ! Prob(A) $
Prob(B).

In practice, the diagnostic tests of ra-
diology are rarely truly independent as
CT, magnetic resonance imaging, and
ultrasonography all rely similarly on
the lesion size and differences in tissue
characteristics. Yet, quite often, the
multiplicative law is used as an approx-
imation because the exact conditional
probability has never been accurately
determined in clinical trials of both di-
agnostic modalities.

The same rules may be used to calcu-
late the risk of disease in the presence of
multiple predictive characteristics (or co-
factors). If the effects of the cofactors are
synergistic, the more general multiplica-
tive rule must be used. But if the effects of
the cofactors are unrelated or indepen-
dent, the multiplicative rule for indepen-
dent events may be used. Similarly, the
rules may be used to compute the overall
chance of a successful treatment of dis-
ease with a succession of treatments
based on the (conditional) chance of suc-
cess of each treatment.

BAYES RULE AND POSITIVE
AND NEGATIVE PREDICTIVE
VALUES

While the sensitivity and specificity of a
diagnostic test are important to the clini-
cian when he or she determines which
test to use, they do not entirely address
the question of concern after the test has
been performed. To the patient, the issue
is not “How often does the test detect real
disease?” but rather, “Now that the test
results are known, what is the chance
that I have the disease?” The patient
wants to know a conditional probability
that is the reverse of sensitivity. If we use
Dx to denote a positive finding and D to
denote the actual presence of disease, the
patient is not as concerned with the sen-
sitivity, Prob(Dx!D), as with the PPV,
Prob(D!Dx), the chance that there is dis-
ease present given that the test result was
positive.

Both sensitivity and specificity are con-
sidered to be inherent invariant test char-
acteristics. In contrast, the PPV and the
negative predictive value depend not
only on the sensitivity and specificity but
also on the prevalence of the disease,
Prob(D). They may be combined by using
Bayes rule (3), which relates the PPV,
Prob(D!Dx), to the sensitivity, Prob(Dx!D),
the specificity, 1 # Prob(Dx!NOT D), and
the prevalence, Prob(D).

Prob%D!Dx&

!
Prob%Dx!D& " Prob%D&

Prob%Dx!D& " Prob%D&
# Prob%Dx!NOT D& " Prob%NOT D&

.

In this equation, the denominator is
the total number of expected positive
findings in the population, while the nu-
merator is the number of positive find-
ings that accompany the actual disease.

Suppose that we had a diagnostic test
used for screening that had both 95% sen-
sitivity (positive in 95% of all cases where
the disease is present) and 95% specificity
(negative in 95% of all cases where the

disease is absent). When the prevalence of
the disease is 10%, out of every 10,000
screening examinations, we can expect to
see 1,400 cases that result in a positive find-
ing with the diagnostic test (Table). Rather
than go through the laborious exercise of
constructing tables, Bayes rule gives us
the PPV directly. For 10% prevalence,
Prob(D) ! 0.10, we have PPV ! (0.95 $
0.10)/(0.95 $ 0.10) " (0.05 $ 0.90) !
0.095/(0.095 " 0.045) ! 0.679.

P VALUES, POWER, AND
BAYESIAN STATISTICS

Bayes rule applies for any two events, A
and B, not just positive findings, DX, and
presence of disease, D. The distinction be-
tween the Prob(A!B) and the Prob(B!A) also
forms the basis of the difference between
conventional and Bayesian statistical anal-
ysis of a clinical trial. In conventional sta-
tistical analysis of the results of a study, B
represents the null hypothesis. After the
study has been performed and the results A
have been observed, the conventional de-
cision regarding the truth of B is based on
the likelihood of A*, any result as extreme
or even more extreme than A, given that B
is true, Prob(A*!B). This probability is
known as the P value. The less likely that
any result as extreme as A, given B, the
stronger the evidence that B is not true.
Conventionally, some cutoff (known as
the level of significance) is set in advance,
and the study is deemed to have significant
findings if the P value is smaller than the
cutoff.

In a conventional analysis, the proba-
bility of significant study results, S, con-
ditional on B being false, Prob(S!NOT B),
is known as the power. It is not a factor in
the conclusion drawn from the study.
Rather, it is the major factor in the design
before the study is conducted. It deter-
mines the number of patients in the
study. The study sample size is chosen to
provide the desired chance of success-
fully showing that B is not true.

Bayesian statistics differs from conven-
tional statistics insofar as it depends on
the probability that the hypothesis holds
given the observed results of the study or
studies. This probability is calculated by
means of the Bayes rule. In order to be
able to calculate it, the (subjective) prob-
ability reflecting the prior (before the
study) chance or belief that the hypoth-
esis was true is required. Much of the
dispute regarding the use of Bayesian
analysis centers around the possibility of
conclusions that might be largely dic-
tated by “opinion” before hard data are
obtained.

Example of Calculation of Positive and Negative Predictive Values Based on
Expected Number of Cases Derived from Prevalence, Sensitivity, and Specificity

Disease Positive Finding B Negative Finding NOT B Prevalence*

Present A TP, 950 FN, 50 1,000 (10)
Absent NOT A FP, 450 TN, 8,550 9,000 (90)

Total 1,400 8,600 10,000

Note.—Prevalence of disease is 10% out of every 10,000 screening examinations. A and B are
events. FN ! false-negative, FP ! false-positive, TN ! true-negative, TP ! true-positive.

* Data in parentheses are percentages.
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P values, power, and Bayesian analysis
will be presented in later articles in this
series. Software for Bayesian probabilities
may be found at the University of Sheffield
Web site at www.shef.ac.uk/~st1ao/1b.html.

PROBABILITY FOR
CONTINUOUS OUTCOMES

The interpretation of the probability that a
tumor consists of a specified number of
cells differs in one essential regard from the
interpretation of the probability that the
tumor is a specified diameter or volume.
The number of cells is “discrete” in the
sense that it can only be an integer value.
No fractional number of cells is possible. As
such, each possible number of cells has its
own probability, and if that number of
cells is possible, the probability is greater
than 0. But the diameter or volume of a
tumor can take on all fractional values, as
well as an integer. The probability that the
tumor is between 2 and 3 cm in diameter
could be treated in the same way as all of
the probabilities that we have been discuss-
ing. However, the probability that the tu-
mor is exactly ' cm to the last decimal
place (or any other exact value, even, say, 3
cm to the last decimal place) has to differ
in meaning.

For continuous measures such as the
diameter or volume of a tumor or time of
an occurrence, the probability that it ex-
actly equals a single value is analogous to
the distance traveled or the radiation re-
ceived in an instant. Instead, one can
express the rate at each value and calcu-
late the probability of any interval just as
one calculates the distance traveled over
any time interval from the instantaneous
speed or the total radiation exposure
from the instantaneous rate of exposure.

Happily, all of the rules discussed for
discrete outcomes apply equally well to
continuous ones, both for intervals and
for the rates at specified values.

DISTRIBUTIONS

These rules may be used to provide for-
mulas for calculating the distribution,
the probabilities for all possible out-
comes, under a variety of circumstances.
Two of the distributions most commonly
encountered by radiologists are the bino-
mial and the normal distributions.

The binomial distribution, B(i!n,p), (4)
describes the probability of an event occur-
ring i times out of n tries, where the
chance, p, of the event is the same for all
tries and the occurrence of the event in one
try is unrelated (independent) to its occur-
rence in any other try. The distribution
then gives the probabilities of each possi-
ble number of occurrences of the event out
of n cases. The specific formula for the
probability of i events out of n cases,
B(i!n,p), is B(i!n,p) ! [n!/i!(n # i)!]pi(1 # p)n # i,
where ! indicates factorial, as in n! ! n $
(n # 1) $ (n # 2) $ . . .$ 2 $ 1.

In practice, this distribution is built
into most statistical and spreadsheet soft-
ware packages. For instance, by using Mi-
crosoft Excel software, B(i!n,p) is calcu-
lated by the function BINOMDIST.

A binomial distribution that a radiolo-
gist might encounter is the probability of
detecting i cancers with screening. In order
for the binomial distribution to apply, the
sensitivity would have to be identical for
all of the cancers. Additionally, the detec-
tion (or nondetection) of any one cancer
could not influence the chance that an-
other was detected. If both conditions ap-
plied and there were n actual cases of can-
cer among those screened, B(i!n,p) would
be the chance that i cancers were detected
if the sensitivity of the technique was
given by p. Thus, if there were actually
eight cancers and the sensitivity of screen-
ing was 70%, the chance that exactly six
of those eight cancer were detected is
B(6!8,0.7) ! [8!/6!(8 # 6)!]0.76(1 # 0.7)8 # 6 !

0.296. The full distribution is depicted in
Figure 2.

The normal, or Gaussian (2,5,6), distri-
bution describes the probabilities for a
continuous outcome that is the result of
averaging out a very large number of in-
dependent random contributions. The
background component to number of x
rays detected in a square millimeter of
plain film is normally distributed. It is
commonly described as a “bell-shaped”
curve.

The distribution depends on two val-
ues or parameters: the mean, (, and the
SD, ). (See the preceding article [7] in this
series.) The mean determines the loca-
tion of the high point of the curve. The
SD gives the scale. The height of the
curve at any point, x, is determined by
the “z score,” the difference of x and ( in
units of ). That is, the height depends
only on z ! (x # ()/).

Again, the height is found as a func-
tion in most spreadsheets and statistical
software. With Excel software, it is given
by NORMDIST. The distribution is de-
picted in Figure 3.
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Measurement Variability and
Confidence Intervals in
Medicine: Why Should
Radiologists Care?1

In radiology, appropriate diagnoses are often based on quantitative data. However,
these data contain inherent variability. Radiologists often see P values in the litera-
ture but are less familiar with other ways of reporting statistics. Statistics such as the
SD and standard error of the mean (SEM) are commonly used in radiology, whereas
the CI is not often used. Because the SEM is smaller than the SD, it is often
inappropriately used in order to make the variability of the data look tighter.
However, unlike the SD, which quantifies the variability of the actual data for a single
sample, the SEM represents the precision for an estimated mean of a general
population taken from many sample means. Since readers are usually interested in
knowing about the variability of the single sample, the SD often is the preferred
statistic. Statistical calculations combine sample size and variability (ie, the SD) to
generate a CI for a population proportion or population mean. CIs enable research-
ers to estimate population values without having data from all members of the
population. In most cases, CIs are based on a 95% confidence level. The advantage
of CIs over significance tests (P values) is that the CIs shift the interpretation from a
qualitative judgment about the role of chance to a quantitative estimation of the
biologic measure of effect. Proper understanding and use of these fundamental
statistics and their calculations will allow more reliable analysis, interpretation, and
communication of clinical information among health care providers and between
these providers and their patients.
© RSNA, 2003

Radiologists and physicians rely heavily on quantitative data to make specific diagnoses.
Furthermore, the patients and the referring physicians place trust in the radiologist’s
assessment of these quantitative data for determination of appropriate treatment. For
example, a radiologist can inform a patient that he or she has a significant stenosis of the
carotid artery because the peak systolic velocity (PSV) determined by using ultrasonogra-
phy (US) is 280 cm/sec. The radiologist’s final diagnosis of a significant stenosis of the
carotid artery may suggest that treatment with endarterectomy or stent placement is
indicated for this patient. But how reliable is the PSV of 280 cm/sec as a true estimate of
significant stenosis of the carotid artery? How does this value help in the differentiation
between stenosis and nonstenosis? What is the variability of the PSV when stenosis is
present? Which population was included in the study and what was the sample size for
determining normal and abnormal arterial lumen size? These are very important questions
because the well-being of the patients and the credibility of the radiologists depend, in
part, on a clear understanding of the answers to these questions.

Precise knowledge of important statistical parameters, such as the SD, the standard error
of the mean (SEM), and the CIs, will provide the radiologist with answers to the questions
previously posed. Most of these parameters can be quickly and easily obtained with a small
calculator. In addition, these parameters are useful while reading the literature. Appropri-
ate understanding and use of these fundamental statistics, namely, the SD, the SEM, and
the CI, will allow more reliable analysis, interpretation, and communication of clinical
information among health care providers and between these providers and their patients.
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WHAT ARE RANDOM
SAMPLING AND THE
CENTRAL LIMIT THEOREM?

Obtaining a sample that is representative
of a larger population is key in any study
design. A random sample is a sample cho-
sen to minimize bias (1, pp 248–277). A
simple random sample is a sample in
which every subject of the population
has an equal chance of being included in
the sample (1, pp 248–277). The only
way to be sure of a representative sample
is to select the subjects at random, so that
whether or not each subject in the pop-
ulation is chosen for the sample is purely
a matter of chance and is not based on
the subject’s characteristics (2, pp 33–36).

Random sampling has other advantages.
Because the sample is randomly selected,
the methods of probability theory can be
applied to the data obtained. This enables
the clinician to estimate the likely size of
the errors that may occur, for example,
with the SD or CIs, and to present them as
part of the results (2, pp 33–36).

In general, if one has any series of in-
dependent identically distributed ran-
dom variables, then their sum tends to
produce a normal distribution as the num-
ber of variables increases (2, pp 116–120)
(Fig 1). This fundamental theorem in sta-
tistics is known as the central limit theo-
rem (1, pp 248–277; 2, pp 116–120). Sim-
ply stated, as sample size increases, the
means of samples from a population of any
distribution will approach the normal
(Gaussian) distribution. This is an impor-
tant property because it allows clinicians to
use the normal distribution to formulate
inferences from the data about means of
populations. In addition, the variability of
means of samples obtained from a popula-
tion decreases as the sample size increases.
However, the sample size required to make
use of the central limit theorem depends
on the underlying distribution of the pop-
ulation, and skewed populations require
larger samples.

For example, suppose a group of radi-
ologists want to study PSV in the com-
mon carotid artery of children in a small
Amazon Indian tribe by using Doppler
US spectrum analysis. Figure 1 shows that
as the number of children selected in
each series of random samples increases,
the sum of these numbers tends to pro-
duce a normal distribution, as shown by
the bell-shaped Gaussian distribution of
PSV in the pediatric population sampled.
As the sample size increases, the mean
and SD come closer to the population’s
mean and SD (Fig 2).

WHAT IS THE DIFFERENCE
BETWEEN THE SD AND
THE SEM?

The SD and the SEM measure two very
different entities, but clinicians often
confuse them. Some medical researchers
summarize their data with the SEM be-
cause it is always smaller than the SD (3).
Because the SEM is smaller, it often is
inappropriately used to make the vari-
ability of the data look tighter. This kind
of reporting of statistics should be dis-
couraged.

The following example is given to il-
lustrate the difference between the SD

and the SEM and why one should sum-
marize data by using the SD. Suppose
that, in a study sample of patients with
atherosclerotic disease, an investigator
reported that the PSV in the carotid ar-
tery was 220 cm/sec and the SD was 10.
Since the PSV in about 95% of all popu-
lation members is within roughly 2 SDs
of the mean, the results would tell one
that, assuming the distribution is approx-
imately normal, it would be unusual to
observe a PSV less than 200 cm/sec or
greater than 240 cm/sec in moderate ath-
erosclerotic disease of the carotid artery.
Therefore, a summary of the population
and a range with which to compare spe-

Figure 1. Graph shows PSV of the common carotid artery in an Am-
azon Indian population. Note that as the sample size increases from 5 to
100 subjects, the SD decreases and the 95% CI becomes narrower.
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cific patients who are examined by the
clinician are described in the article.

Unfortunately, the investigator is quite
likely to say that the PSV of the common
carotid artery was 220 cm/sec " 1.6
(SEM). If one confused the SEM with the
SD, one would believe that the range of
most of the population was narrow, be-
tween 216.8 and 223.2 cm/sec. These val-
ues describe the range that about 95% of
the time includes the mean PSV of the
entire population from which the sample
of patients was chosen. The SEM is sim-
ply a measure of how far the sample
mean is likely to be from the actual pop-
ulation mean. In practice, however, one
generally wants to compare an individual
patient’s PSV with the spread of the pop-
ulation distribution as a whole and not
with the population mean (3). This infor-
mation is provided by the SD and not by
the SEM.

WHAT ARE CIs?

Most biomedical research relies on the
premise that what is true for a randomly
selected sample from a population will be
true, more or less, for the population
from which the sample was chosen (1, pp
55–63). Therefore, measurements in the
sample are used to estimate the charac-
teristics of the population included in the
study. The reliability of the results ob-
tained from a sample is addressed by con-
structing CIs around statistics of the sam-

ple. The amount of variation associated
with an estimate determined from a sam-
ple can be expressed by a CI.

A CI is the range of values that is be-
lieved to encompass the actual (“true”)
population value (1, pp 55–63). This true
population value or parameter of interest
usually is not known, but it does exist and
can be estimated from an appropriately se-
lected sample. CIs around population esti-
mates provide information about how pre-
cise the estimate is. Wider CIs indicate
lesser precision, while narrower ones indi-
cate greater precision (Figs 1, 2). CIs pro-
vide bounds to estimates.

If one repeatedly obtained samples from
the population and constructed CIs for
each sample, then one could expect a cer-
tain percentage of the CIs to include the
value of the true population and a certain
percentage of them not to include that
value. For example, with a 95% CI, the
level of certainty is 95% of such CIs ob-
tained in repeated sampling to include the
true parameter value and only 5% of the
CIs not to include the true parameter
value.

HOW ARE CIs FOR A MEAN
CALCULATED?

The mean of a set of measurements is
calculated from the sample of patients.
Therefore, the mean one calculates is un-
likely to be exactly equal to the popula-
tion mean. The size of the discrepancy

depends on the size and variability of the
sample (3, pp 163–190; 4). If the sample
is small and variable, the sample mean
may be far from the population mean. If
the sample is large with little scatter, the
sample mean will probably be very close
to the population mean. Statistical calcu-
lations combine sample size and variabil-
ity (ie, SD) to generate a CI for the pop-
ulation mean.

One can calculate an interval for any
desired degree of confidence, although
95% CIs are by far the most commonly
used. The following equation is the usual
method for calculating a 95% CI that is
based on a normally distributed sample
with a known SD or one that is based on
a sample from a population with an un-
known SD but in which the population is
known to be normally distributed and
the sample itself is large (ie, n # 100):

95% CI ! mean " z

$ %sample SD/&!n'(, (1)

where z (standardized score) is the value
of the standard normal distribution with
the specific level of confidence. For a 95%
CI, z ! 1.96 (approximately 2.0).

The scale of z scores is independent of
the units of measurement. Therefore, for
any measurement being investigated,
one can calculate an individual’s z score
and compare it with that of other indi-
viduals. The z scores are calculated from
the sample data as (X ) mean)/SD, where
X is the actual individual’s value. For ex-
ample, if an individual’s value is 1 SD
above the mean for the group, that indi-
vidual’s z score is 1.0; a value 1 SD below
the mean corresponds to a z score of
)1.0. Approximately 68.0% of the area
under the normal curve includes z scores
between )1.0 and 1.0, approximately
95.0% of the area includes z scores be-
tween )2.0 and 2.0, and 99.7% of the
area under the normal curve includes z
scores between )3.0 and 3.0.

Equation (1) can be applied when the
data conform to a normal (Gaussian) dis-
tribution and when the population SD is
known. When the sample is small (n *
100) and information regarding the para-
metric SD is not known, one must rely on
the sample SD, which requires setting CIs
by using the t distribution. In this situa-
tion, the z value should be replaced with
the appropriate critical value of the t dis-
tribution with n ) 1 degrees of freedom,
where n is the sample size.

The t distribution, or the Student t dis-
tribution, resembles the normal distribu-
tion, although its shape depends on the
sample size. It is wider than the normal

Figure 2. Graph summarizes the data from Figure 1. As the sample size increases, the sample
mean and SD are a closer representation of the population’s mean and SD. In addition, as the
sample size increases, the 95% CI narrows.
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distribution to account for variability in
estimating the mean and SD from the
sample data (5). The t distribution differs
from the normal distribution in that it
assumes different shapes depending on
the number of degrees of freedom. There-
fore, when setting a CI around a mean,
the appropriate critical value of the t dis-
tribution should be used in place of the z
value in Equation (1). This t value can be
found in a conventional t table included
in most statistical textbooks. For exam-
ple, in a study with a sample size of 25,
the critical value for a t distribution that
corresponds to a 95% CI, where 1 ) + is
the confidence level and n ) 1 indicates
the degrees of freedom, is 2.064.

CIs can be constructed for any desired
level of confidence. There is nothing
magical about 95%, although it is tradi-
tionally used. If greater confidence is
needed, then the CIs have to be wider.
Consequently, 99% CIs are wider than
95% CIs, and 90% CIs are narrower than
95% CIs. Wider CIs are associated with
greater confidence but less precision.
This is the trade-off.

If one assumes that a sample was ran-
domly selected from a certain population
(that follows a normal distribution), one
can be 95% sure that the CI includes the
population mean. More precisely, if one
generates many 95% CIs from many data
sets, one can expect that the CI will in-
clude the true population mean in 95%
of the cases and that the CI will not in-
clude the true mean value in the other
5%. Therefore, the 95% CI is related to
statistical significance at the .05 level,
which means that the CI itself can be
used to determine if an estimated change
is statistically significant at the .05 level
(1, pp 55–63).

Whereas the P value is often inter-
preted as an indication of a statistically
significant difference, the CI, by provid-
ing a range of values, allows the reader to
interpret the implications of the results at
either end of the range (1, pp 55–63; 6).
For example, if one end of the range in-
cludes clinically important results but
the other does not, the results can be
regarded as inconclusive, not simply as
an indication of a statistically significant
difference or not. In addition, whereas P
values are not presented in units, CIs are
presented in the units of the variable of
interest, and this latter presentation
helps readers to interpret the results. CIs
are generally preferred to P values be-
cause CIs shift the interpretation from a
qualitative judgment about the role of
chance to a quantitative estimation of
the biologic measure of effect (1, pp 55–

63; 6). More importantly, the CI quanti-
fies the precision of the mean.

For example, findings in two hypothet-
ical articles about US in the carotid artery
in elderly patients indicate that a mean
PSV of 200 cm/sec is associated with a
70% stenosis of the vascular diameter.
Both articles reported the same SD of 50
cm/sec. However, one article was about a
study that included 50 subjects, whereas
the other one was about a study that
included 500 subjects. At first glance,
both articles appear to have the same in-
formation. This is delineated with the
calculations here.

The calculations in the article with the
smaller sample were as follows:

95% CI ! 200 " 1.96" 50
!50#,

95% CI ! 200 " 14.

The calculations in the article with the
larger sample were as follows:

95% CI ! 200 " 1.96" 50
!500#,

95% CI ! 200 " 4.

However, in the article with the smaller
sample, the 95% CI was 186 to 214 cm/
sec, whereas in that with the larger sam-
ple, the 95% CI was 196 to 204 cm/sec.
Therefore, the article with the larger sam-
ple has a narrower 95% CI.

WHY ARE CIs FOR
SENSITIVITY AND SPECIFICITY
OF A TEST IMPORTANT?

Most radiologists are familiar with the
basic concepts of specificity and sensitiv-
ity and use them to evaluate the diagnos-
tic accuracy of diagnostic tests in clinical
practice. Since sensitivity and specificity
are proportions, CIs can be calculated
and should be reported in all research
articles. CIs are needed to help one to be
more certain about the clinical value of

any screening or diagnostic test and to
decide to what degree one can rely on the
results. Omission of the precision of the
sensitivity and specificity in a particular
study can make a difference in the inter-
pretation of the findings of that study (7).

The simplest diagnostic test is dichot-
omous, in which the results are used to
classify patients into two groups accord-
ing to the presence or absence of disease.
Magnetic resonance (MR) imaging and
arthroscopic findings from a hypotheti-
cal example are delineated in Table 1. In
this hypothetical study, arthroscopy is
considered the standard of reference. The
question that arises in the clinical setting
is, “How good is knee MR imaging at
helping to distinguish torn and intact
ACLs?” In other words, “To what degree
can one rely on the interpretation of MR
imaging in making judgments about the
status of a patient’s knee?”

One method of measuring the value of
MR imaging in the detection of ACL tears
is to calculate the proportion of torn
ACLs and the proportion of intact ACLs
that were correctly classified by using MR
imaging. These proportions are known as
the sensitivity and specificity of a test,
respectively.

Sensitivity is calculated as the propor-
tion of torn ACLs that were correctly clas-
sified by using MR imaging. In this exam-
ple, of the 421 knees with ACL tears, 394
were correctly evaluated with MR imag-
ing (Table 1). The sensitivity of MR im-
aging in the detection of ACL tears is,
therefore, 94% (ie, sensitivity ! 394/
421 ! 0.94). In other words, 94% of ACL
tears were correctly classified as torn by
using MR imaging. The 95% CI for a pro-
portion can be determined by the equa-
tion shown here:

95% CI ! p " z # ! %p&1 $ p'(/n. (2)

By using Equation (2), the 95% CI for
sensitivity is 0.94 " 0.02, or 0.92 to 0.96.
Therefore, one expects MR imaging to
have a sensitivity between 92% and 96%.

TABLE 1
Hypothetical Example: MR Imaging Depiction of ACL Tear

MR Imaging Findings

Arthroscopic Findings

TotalTorn ACL Intact ACL

Torn ACL 394 32 426
Intact ACL 27 101 128

Total 421 133 554

Note.—Data are numbers of knees. Arthroscopic findings were the standard of reference. ACL !
anterior cruciate ligament.
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Specificity is calculated as the propor-
tion of intact ACLs that were correctly
classified by using MR imaging. Of the
133 knees with an intact ACL, 101 were
correctly classified. The specificity of MR
imaging is, therefore, 76% (ie, specific-
ity ! 101/133 ! 0.76). This means that
76% of intact ACLs were correctly classi-
fied as intact by using MR imaging. By
using Equation (2), the 95% CI for spec-
ificity is 0.76 " 0.07 or 0.69 to 0.83.
Therefore, one expects MR imaging to
have a specificity between 69% and 83%.
It is also important to note that the CI
was wider for specificity than it was for
sensitivity because the sample groups
were 133 (smaller) and 421 (larger), re-
spectively.

CAN CIs FOR ODDS RATIOS BE
CALCULATED?

CIs can also be calculated around risk
measures, such as the relative risk or the
odds ratio (OR). Consider an example in
which radiographic effusion is examined
to ascertain whether it is useful in the
differentiation between septic arthritis
and transient synovitis among children
who have acute hip pain at presentation.

Data from a study by Kocher et al (8)
are shown in Table 2 and can be summa-
rized as follows: For those patients with
radiographic effusion, the odds of having
septic arthritis are 63/33 (effusion/no ef-
fusion) ! 1.9. The odds of having septic
arthritis for those with no radiographic
effusion are 19/53 (effusion/no effu-
sion) ! 0.36. The OR is the ratio of these
two odds: 1.9/0.36 ! 5.3. This means
that children with a radiographic effu-
sion are approximately five times more
likely to have septic arthritis than those
without a radiographic effusion. The OR
is sometimes referred to as the cross prod-
uct ratio because it can be calculated by
means of multiplication of the counts in

the diagonal cells and division of data as
follows (Table 2): OR ! ad/bc ! (63 $
53)/(33 $ 19) ! 3,339/627 ! 5.3.

The OR is only a single number, that is,
a “point estimate.” The precision of this
estimate can be described with a CI,
which describes the statistical signifi-
cance of the association between two
variables within a specific range. The
width of the CI reflects the amount of
variability inherent in the OR. There is a
trade-off between precision and confi-
dence. Wider CIs provide greater cer-
tainty but are less precise. Narrower CIs
are more precise but less certain that the
truth is within the CI. In radiology and
medicine, the most commonly reported
CI corresponding to the OR is the 95%
CI.

Several methods are commonly used to
construct CIs around the OR. A simple
method for constructing CIs (8) can be
expressed as follows:

CI ! &OR'exp

%" z! &1/a % 1/b % 1/c % 1/d'(, (3)

where z is the value of the standard nor-
mal distribution with the specific level of
confidence, and exp is the base of the
natural logarithm (often symbolized as e).

By using Equation (3), the 95% CI in
our example is calculated as follows:

95% CI ! logeOR

" 1.96! 1
63 %

1
33 %

1
19 %

1
53

95% CI ! loge&5.3' " 1.96&0.348'

95% CI ! loge&5.3' " 0.682

LL ! 1.67 $ 0.682 ! 0.988

UL ! 1.67 % 0.682 ! 2.352

LL ! e0.988 ! 2.69

UL ! e2.352 ! 10.50,

where e is 2.718, LL represents the lower
limit, and UL represents the upper limit.

Therefore, among children who have
acute hip pain at presentation, those
with a radiographic effusion are, on av-
erage, 5.3 times more likely to have septic
arthritis compared with those with no
radiographic effusion. The 95% CI lower
limit of the OR is 2.7 and the upper limit
is 10.5. When the 95% CI does not in-
clude 1.0 (as in this example), the results
indicate a statistically significant differ-
ence at the .05 level (ie, P * .05).

CONCLUSION

The SD and SEM measure different pa-
rameters. The two are commonly con-
fused in the medical literature. The SD
can be thought of as a descriptive statistic
that indicates the variation among mea-
surements taken from a sample (1, pp
55–63). Investigators should not report
summary statistics in terms of the SEM.
The 95% CI is the preferred statistic for
indicating the precision of an estimate of
a population characteristic (1, pp 55–63).

CIs can be calculated for means as well
as for proportions. Proportions com-
monly used in medicine include sensitiv-
ity, specificity, and the OR. Proportions
should always be accompanied by 95%
CIs. Proper understanding and use of
fundamental statistics, such as the SD,
the SEM, and the CI, and their calcula-
tions will allow more reliable analysis,
interpretation, and communication of
clinical data to patients and to referring
physicians.
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Hypothesis Testing I:
Proportions1

Statistical inference involves two analysis methods: estimation and hypothesis testing,
the latter of which is the subject of this article. Specifically, Z tests of proportion are
highlighted and illustrated with imaging data from two previously published clinical
studies. First, to evaluate the relationship between nonenhanced computed tomo-
graphic (CT) findings and clinical outcome, the authors demonstrate the use of the
one-sample Z test in a retrospective study performed with patients who had ureteral
calculi. Second, the authors use the two-sample Z test to differentiate between primary
and metastatic ovarian neoplasms in the diagnosis and staging of ovarian cancer. These
data are based on a subset of cases from a multiinstitutional ovarian cancer trial
conducted by the Radiologic Diagnostic Oncology Group, in which the roles of CT,
magnetic resonance imaging, and ultrasonography (US) were evaluated. The statistical
formulas used for these analyses are explained and demonstrated. These methods may
enable systematic analysis of proportions and may be applied to many other radiologic
investigations.
© RSNA, 2003

Statistics often involve a comparison of two values when one or both values are associated
with some uncertainty. The purpose of statistical inference is to aid the clinician, re-
searcher, or administrator in reaching a conclusion concerning a population by examining
a sample from that population. Statistical inference consists of two components, estima-
tion and hypothesis testing, and the latter component is the main focus of this article.

Estimation can be carried out on the basis of sample values from a larger population (1).
Point estimation involves the use of summary statistics, including the sample mean and
SD. These values can be used to estimate intervals, such as the 95% confidence level. For
example, by using summary statistics, one can determine the sensitivity or specificity of
the size and location of a ureteral stone for prediction of the clinical management
required. In a study performed by Fielding et al (2), it was concluded that stones larger than
5 mm in the upper one-third of the ureter were very unlikely to pass spontaneously.

In contrast, hypothesis testing enables one to quantify the degree of uncertainty in sam-
pling variation, which may account for the results that deviate from the hypothesized values
in a particular study (3,4). For example, hypothesis testing would be necessary to determine if
ovarian cancer is more prevalent in nulliparous women than in multiparous women.

It is important to distinguish between a research hypothesis and a statistical hypothesis.
The research hypothesis is a general idea about the nature of the clinical question in the
population of interest. The primary purpose of the statistical hypothesis is to establish the
basis for tests of significance. Consequently, there is also a difference between a clinical
conclusion based on a clinical hypothesis and a statistical conclusion of significance based
on a statistical hypothesis. In this article, we will focus on statistical hypothesis testing
only.

In this article we review and demonstrate the hypothesis tests for both a single propor-
tion and a comparison of two independent proportions. The topics covered may provide
a basic understanding of the quantitative approaches for analyzing radiologic data. De-
tailed information on these concepts may be found in both introductory (5,6) and
advanced textbooks (7–9). Related links on the World Wide Web are listed in Appendix A.

STATISTICAL HYPOTHESIS TESTING BASICS

A general procedure is that of calculating the probability of observing the difference
between two values if they really are not different. This probability is called the P value,
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and this condition is called the null hy-
pothesis (H0). On the basis of the P value
and whether it is low enough, one can
conclude that H0 is not true and that
there really is a difference. This act of
conclusion is in some ways a “leap of
faith,” which is why it is known as statis-
tical significance. In the following text,
we elaborate on these key concepts and
the definitions needed to understand the
process of hypothesis testing.

There are five steps necessary for con-
ducting a statistical hypothesis test:
(a) formulate the null (H0) and alterna-
tive (H1) hypotheses, (b) compute the test
statistic for the given conditions, (c) cal-
culate the resulting P value, (d) either re-
ject or do not reject H0 (reject H0 if the P
value is less than or equal to a prespeci-
fied significance level [typically .05]; do
not reject H0 if the P value is greater than
this significance level), and (e) interpret
the results according to the clinical hy-
pothesis relevant to H0 and H1. Each of
these steps are discussed in the following
text.

Null and Alternative Hypotheses

In general, H0 assumes that there is no
association between the predictor and out-
come variables in the study population. In
such a case, a predictor (ie, explanatory or
independent) variable is manipulated, and
this may have an effect on another out-
come or dependent variable. For example,
to determine the effect of smoking on
blood pressure, one could compare the
blood pressure levels in nonsmokers, light
smokers, and heavy smokers.

It is mathematically easier to frame hy-
potheses in null and alternative forms,
with H0 being the basis for any statistical
significance test. Given the H0 of no as-
sociation between a predictor variable
and an outcome variable, a statistical hy-
pothesis test can be performed to esti-
mate the probability of an association
due to chance that is derived from the
available data. Thus, one never accepts
H0, but rather one rejects it with a certain
level of significance.

In contrast, H1 makes a claim that
there is an association between the pre-
dictor and outcome variables. One does
not directly test H1, which is by default
accepted when H0 is rejected on the basis
of the statistical significance test results.

One- and Two-sided Tests

The investigator must also decide
whether a one- or two-sided test is most
suitable for the clinical question (4). A

one-sided H1 test establishes the direc-
tion of the association between the pre-
dictor and the outcome—for example,
that the prevalence of ovarian cancer is
higher in nulliparous women than in
parous women. In this example, the pre-
dictor is parity and the outcome is ovar-
ian cancer. However, a two-sided H1 test
establishes only that an association exists
without specifying the direction—for ex-
ample, the prevalence of ovarian cancer
in nulliparous women is different (ie, ei-
ther higher or lower) from that in parous
women. In general, most hypothesis tests
involve two-sided analyses.

Test Statistic

The test statistic is a function of sum-
mary statistics computed from the data.
A general formula for many such test sta-
tistics is as follows: test statistic ! (rele-
vant statistic " hypothesized parameter
value)/(standard error of the relevant sta-
tistic), where the relevant statistics and
standard error are calculated on the basis
of the sample data. The standard error is
the indicator of variability, and much of
the complexity of the hypothesis test in-
volves estimating the standard error cor-
rectly. H0 is rejected if the test statistic
exceeds a certain level (ie, critical value).

For example, for continuous data, the
Student t test is most often used to deter-

mine the statistical significance of an ob-
served difference between mean values
with unknown variances. On the basis of
large samples with underlying normal
distributions and known variances (5),
the Z test of two population means is
often conducted. Similar to the t test, the
Z test involves the use of a numerator to
compare the difference between the sam-
ple means of the two study groups with
the difference that would be expected
with H0, that is, zero difference. The de-
nominator includes the sample size, as
well as the variances, of each study group
(5).

Once the Z value is calculated, it can be
converted into a probability statistic by
means of locating the P value in a stan-
dard reference table. The Figure illus-
trates a standard normal distribution
(mean of 0, variance of 1) of a test statis-
tic, Z, with two rejection regions that are
either below "1.96 or above 1.96. Two
hypothetical test statistic values, "0.5
and 2.5, which lie outside and inside the
rejection regions, respectively, are also
included. Consequently, one does not re-
ject H0 when Z equals "0.5, but one does
reject H0 when Z equals 2.5.

P Value

When we conclude that there is statis-
tical significance, the P value tells us

Graph illustrates the normal distribution of the test statistic Z in a two-sided hypothesis test.
Under H0, Z has a standard normal distribution, with a mean of 0 and a variance of 1. The critical
values are fixed at #1.96, which corresponds to a 5% significance level (ie, type I error) under H0.
The rejection regions are the areas marked with oblique lines under the two tails of the curve, and
they correspond to any test statistic lying either below "1.96 or above $1.96. Two hypothetical
test statistic values, "0.5 and 2.5, result in not rejecting or rejecting H0, respectively.
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what the probability is that our conclu-
sion is wrong when in fact H0 is correct.
The lower the P value, the less likely that
our rejection of H0 is erroneous. By con-
vention, most analysts will not claim
that they have found statistical signifi-
cance if there is more than a 5% chance
of being wrong (P ! .05).

Type I and II Errors

Two types of errors can occur in hy-
pothesis testing: A type I error (signifi-
cance level %) represents the probability
that H0 was erroneously rejected when in
fact it is true in the underlying popula-
tion. Note that the P value is not the
same as the % value, which represents the
significance level in a type I error. The
significance level % is prespecified (5%
conventionally), whereas the P value is
computed on the basis of the data and
thus reflects the strength of the rejection
of H0 on the test statistic. A type II error
(significance level &) represents the prob-
ability that H0 was erroneously retained
when in fact H1 is true in the underlying
population. There is always a trade-off
between these two types of errors, and
such a relationship is similar to that be-
tween sensitivity and specificity in the
diagnostic literature (Table) (10). The
probability 1 " & is the statistical power
and is analogous to the sensitivity of a
diagnostic test, whereas the probability
1 " % is analogous to the specificity of a
diagnostic test.

STATISTICAL TESTS OF
PROPORTIONS: THE Z TEST

We now focus on hypothesis testing for
either a proportion or a comparison of
two independent proportions. First, we
study a one-sample problem. In a set of
independent trials, one counts the num-
ber of times that a certain interesting
event (eg, a successful outcome) occurs.
The underlying probability of success (a
proportion) is compared against a hy-
pothesized value. This proportion can be
the diagnostic accuracy (eg, sensitivity or
specificity) or the proportion of patients

whose cancers are in remission. We also
study a two-sample problem in which tri-
als are conducted independently in two
study groups. For example, one may
compare the sensitivities or specificities
of two imaging modalities. Similarly, pa-
tients in one group receive a new treat-
ment, whereas independently patients in
the control group receive a conventional
treatment, and the proportions of remis-
sion in the two patient populations are
compared.

When sample sizes are large, the ap-
proximate normality assumptions hold
for both the sample proportion and the
test statistic. In the test of a single pro-
portion (') based on a sample of n inde-
pendent trials at a hypothesized success
probability of '0 (the hypothesized pro-
portion), both n'0 and n(1 " '0) need to
be at least 5 (Appendix B). In the com-
parison of two proportions, '1 and '2,
based on two independent sample sizes
of n1 and n2 independent trials, respec-
tively, both n1 and n2 need to be at least
30 (Appendix C) (5). The test statistic is
labeled Z, and, hence, the analysis is re-
ferred to as the Z test of a proportion.
Other exact hypothesis-testing methods
are available if these minimum numbers
are not met.

Furthermore, the Z and Student t tests
both are parametric hypothesis tests—
that is, they are based on data with an
underlying normal distribution. There
are many situations in radiology research
in which the assumptions needed to use
a parametric test do not hold. Therefore,
nonparametric tests must be considered
(9). These statistical tests will be dis-
cussed in a future article.

TWO RADIOLOGIC EXAMPLES

One-Sample Z Test of a Single
Proportion

Fielding et al (2) evaluated the unen-
hanced helical CT features of 100 ureteral
calculi, 71 of which passed spontane-
ously and 29 of which required interven-
tion. According to data in the available
literature (11–13), approximately 80% of

the stones smaller than 6 mm in diame-
ter should have passed spontaneously.
Analysis of the data in the Fielding et al
study revealed that of 66 stones smaller
than 6 mm, 57 (86%) passed spontane-
ously. To test if the current finding agrees
with that in the literature, we conduct a
statistical hypothesis test with five steps:

1. H0 is as follows: 80% of the ureteral
stones smaller than 6 mm will pass spon-
taneously (' ! 0.80). H1 is as follows: The
proportion of the stones smaller than 6
mm that pass spontaneously does not
equal 80%—that is, it is either less than
or greater than 80% (' ( 0.80). This is
therefore a two-sided hypothesis test.

2. The test statistic Z is calculated to be
1.29 on the basis of the results of the Z
test of a single proportion (5).

3. The P value, .20, is the sum of the
two tail probabilities of a standard nor-
mal distribution for which the Z values
are beyond #1.29 (Figure).

4. Because the P value, .20, is greater
than the significance level % of 5%, H0 is
not rejected.

5. Therefore, our data support the be-
lief that 80% of the stones smaller than 6
mm in diameter will pass spontaneously,
as reported in the literature. Thus, H0 is
not rejected, given the data at hand.
Consequently, it is possible that a type II
error will occur if the true proportion in
the population does not equal 80%.

Two-Sample Z Test to Compare
Two Independent Proportions

Brown et al (14) hypothesized that the
imaging appearances (eg, multilocular-
ity) of primary ovarian tumors and met-
astatic tumors to the ovary might be dif-
ferent. Data were obtained from 280
patients who had an ovarian mass and
underwent US in the Radiologic Diagnostic
Oncology Group (RDOG) ovarian cancer
staging trial (15,16). The study results
showed that 30 (37%) of 81 primary ovar-
ian cancers, as compared with three (13%)
of 24 metastatic neoplasms, were multiloc-
ular at US. To test if the respective under-
lying proportions are different, we conduct
a statistical hypothesis test with five steps:

1. H0 is as follows: There is no differ-
ence between the proportions of mul-
tilocular metastatic tumors ('1) and mul-
tilocular primary ovarian tumors ('2)
among the primary and secondary ovar-
ian cancers—that is, '1 " '2 ! 0. H1 is as
follows: There is a difference in these pro-
portions: One is either less than or
greater than the other—that is, '1 " '2 (
0. Thus, a two-sided hypothesis test is
conducted.

Cross Tabulation Showing Relationship between the Two Error Types

Test Result, Underlying Truth H0 True H0 False

Do not reject H0 Correct action (1 " %) Type II error (&)
Reject H0 Type I error (%) Correct action (1 " &)

Note.—A statistical power of 1 " & is analogous to the sensitivity of a diagnostic test. The
probability 1 " % is analogous to the specificity of a diagnostic test.
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2. The test statistic Z is calculated to be
2.27 on the basis of the results of the Z
test to compare two independent propor-
tions (5).

3. The P value, .02, is the sum of the
two tail probabilities of a standard nor-
mal distribution for which the Z values
are beyond #2.27 (Figure).

4. Because the P value, .02, is less than
the significance level % of 5%, H0 is re-
jected.

5. Therefore, there is a statistically sig-
nificant difference between the propor-
tion of multilocular masses in patients
with primary tumors and that in patients
with metastatic tumors.

SUMMARY AND REMARKS

In this article, we reviewed the hypothe-
sis tests of a single proportion and for
comparison of two independent propor-
tions and illustrated the two test meth-
ods by using data from two prospective
clinical trials. Formulas and program
codes are provided in the Appendices.
With large samples, the normality of a
sample proportion and test statistic can
be conveniently assumed when conduct-
ing Z tests (5). These methods are the
basis for much of the scientific research
conducted today; they allow us to make
conclusions about the strength of re-
search evidence, as expressed in the form
of a probability.

Alternative exact hypothesis-testing
methods are available if the sample sizes
are not sufficiently large. In the case of a
single proportion, the exact binomial test
can be conducted. In the case of two in-
dependent proportions, the proposed
large-sample Z test is equivalent to a test
based on contingency table (ie, )2) anal-
ysis. When large samples are not avail-
able, however, the Fisher exact test based
on contingency table analysis can be
adopted (8,17–19). For instance, in the
clinical example involving data from the
RDOG study, the sample of 24 metastatic
neoplasms is slightly smaller than the re-
quired sample of 30 neoplasms, and,
thus, use of the exact Fisher test may be
preferred.

The basic concepts and methods re-
viewed in this article may be applied to
similar inferential and clinical trial de-
sign problems related to counts and pro-
portions. More complicated statistical
methods and study designs may be con-
sidered, but these are beyond the scope of
this tutorial article (20–24). A list of avail-
able software packages can be found by
accessing the Web links given in Appen-
dix A.

APPENDIX A

Statistical Resources Available on
the World Wide Web

The following are links to electronic text-
books on statistics: www.davidmlane.com
/hyperstat/index.html, www.statsoft.com/textbook
/stathome.html, www.ruf.rice.edu/*lane/rvls.html,
www.bmj.com:/collections/statsbk/index.shtml,
and espse.ed.psu.edu/statistics/investigating
.htm. In addition, statistical software pack-
ages are available at the following address:
www.amstat.org/chapters/alaska/resources
.htm.

APPENDIX B

Testing a Single Proportion by Using
a One-Sample Z Test

Let ' be a population proportion to be
tested (Table B1). The procedure for decid-
ing whether or not to reject H0 is as follows:
' ! '0; this is based on the results of a
one-sided, one-sample Z test at the signifi-
cance level of % with n independent trials

(Table B1). The observed number of suc-
cesses is x, and, thus, the sample proportion
of successes is p ! x/n. In our first clinical
example, that in which the unenhanced he-
lical CT features of 100 ureteral calculi were
evaluated (2), ' ! 0.80, n ! 66, x ! 57, and
p ! 66/57 (0.86).

APPENDIX C

Comparing Two Independent
Proportions by Using a Two-Sample
Z Test

Let '1 and '2 be the two independent
population proportions to be compared (Ta-
ble C1). The procedure for deciding whether
or not to reject H0 is as follows: '1 " '2 ! 0;
this is based on the results of a one-sided,
two-sample Z test at the significance level of %
with two independent trials: sample sizes of
n1 and n2, respectively (Table C1). The ob-
served numbers of successes in these two sam-
ples are p1 ! x1/n1 and p2 ! x2/n2, respec-
tively. To denote the pooled proportion of
successes over the two samples, use the fol-
lowing equation: pc ! (x1 $ x2)/(n1 $ n2). In

TABLE B1
Testing a Single Proportion by Using a One-Sample Z Test

Procedure

H1

' + '0 ' , '0

Do not reject H0 if p is inconsistent
with H1—that is, if p , !0 p + !0

Perform the Z test if p " !0 p # !0

Compute the Z test statistic z $
p % !0

!['0(1"'0)]/n
Same

Compute the P value Probability (Z + z) Probability (Z , z)
With % ! .05, reject H0 if P value # % Same

Note.—Under H0, Z has a standard normal distribution, with a mean of 0 and a variance of 1. The
P value from a two-sided test is twice that from a one-sided test, as shown above. Large sample
assumption requires that both n!0 and n(1 " !0) are greater than or equal to 5, where n!0 and
n(1 " !0) represent numbers of trials; the sum of these two numbers represents the total number
of trials (n) in the sample.

TABLE C1
Comparing Two Independent Proportions by Using a Two-Sample Z Test

Procedure

H1

'1 " '2 + 0 '1 " '2 , 0

Do not reject H0 if p1 " p2 is
inconsistent with H1—that is, if p1 " p2 , 0 p1 " p2 + 0

Perform the test if p1 " p2 " 0 p1 " p2 # 0

Compute the test statistic z $
p1 % p2

![pc-1 % pc.]/-1/n1 & 1/n2.
Same

Compute the P value Probability (Z + z) Probability (Z , z)
With % ! .05, reject H0 if P value # % Same

Note.—Under H0, Z has a standard normal distribution, with a mean of 0 and a variance of 1. The
P value from a two-sided test is twice that from a one-sided test, as shown above. Large sample
assumption requires that both numbers of trials, n1 and n2, are greater than or equal to 30.
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our second clinical example, that involving
280 patients with ovarian masses in the
RDOG ovarian cancer staging trial (15,16),
n1 ! 81, x1 ! 30, n2 ! 24, x2 ! 3, p1 ! x1/n1

(30/81 [0.37]), p2 ! x2/n2 (3/24 [0.13]), and
pc ! (x1 $ x2)/(n1 $ n2), or 33/105 (0.31).

Acknowledgments: We thank Kimberly E.
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Hypothesis Testing II: Means1

Whenever means are reported in the literature, they are likely accompanied by tests
to determine statistical significance. The t test is a common method for statistical
evaluation of the difference between two sample means. It provides information on
whether the means from two samples are likely to be different in the two popula-
tions from which the data originated. Similarly, paired t tests are common when
comparing means from the same set of patients before and after an intervention.
Analysis of variance techniques are used when a comparison involves more than two
means. Each method serves a particular purpose, has its own computational for-
mula, and uses a different sampling distribution to determine statistical significance.
In this article, the authors discuss the basis behind analysis of continuous data with
use of paired and unpaired t tests, the Bonferroni correction, and multivariate
analysis of variance for readers of the radiology literature.
© RSNA, 2003

To establish if there is a statistically significant difference in two groups that are measured
with a continuous variable, such as patient height versus sex, a test of the hypothesis that
there is no difference must be performed. In this article, we discuss the application of three
commonly used methods for testing the difference of means. The three methods are the
independent samples t test, the paired samples t test, and one-way analysis of variance
(ANOVA). Each method is used to compare means obtained from continuous sample data,
but each is designed to serve a particular purpose. All three approaches require normally
distributed variables and produce an estimate of whether there is a significant difference
between means. Independent samples t tests provide information on whether the means
from two samples are likely to be different in the two populations from which the data
originated. Paired samples t tests compare means from the same set of observations
(patients) before and after an intervention is performed. ANOVA is used to test the
differences between three or more sample means. The t test is a commonly used statistical
test that is easy to calculate but can be misapplied (1,2). If a radiologist wishes to compare
two proportions, such as the sensitivity of two tests, the appropriate test is the "2 test,
which is addressed in other articles in this series. What follows in this article is a brief
introduction to three techniques for testing the difference of means.

HYPOTHESIS TESTING FOR TWO SAMPLE MEANS

The t test can be used to evaluate the difference between two means from two independent
samples or between two samples for which the observations in the second sample are not
independent of those in the first sample. The latter is commonly referred to as a paired t
test. Both paired and unpaired t tests use the t sampling distribution to determine the P
value. As reported in a previous article (3), test statistics are compared with sampling
distributions to determine the probability of error. The t distribution is similar to the
standard normal distribution, except that it compensates for small sample sizes (especially
fewer than 30 observations). As total sample size of the two groups increases beyond 120
observations, the two sampling distributions are virtually identical. This attribute allows
the t distribution to be used for all sample sizes, large or small.

Independent Samples t Tests
If a researcher wants to compare means collected from two patient populations, a t test

for independent samples will often be used. The term independent samples indicates that
none of the patients in one sample are included in the second sample. The following
research question will serve as an example: Are T2s in magnetic resonance (MR) imaging
of malignant hepatic masses different from those for benign hepatic masses? Table 1
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presents summary statistics from two pa-
tient samples to answer this question
(Figure). One sample includes only pa-
tients with malignant tumors. The sec-
ond sample includes only patients with
benign tumors (hemangiomas). The aver-
age T2 for malignant lesions is about 92
msec, while hemangiomas had an aver-
age T2 of 136 msec. The t test is used to
test the null hypothesis that the T2 for
malignant tumors is not different from
that for benign tumors: To conduct this
test, the difference between the two
means is used in conjunction with the
variation found in both samples (SD) and
sample sizes to compute a t test statistic.
The t test formula is

t !
X1 " X2

Sx1#x2

,

where X1 is the mean for sample 1, X2 is
the mean for sample 2, and S is the vari-
ance. The pooled standard error of the
difference between two sample means is

Sx1#x2 ! !n1s1
2 # n2s2

2

n1 # n2 " 2 ! n1 # n2

n1n2
,

where n1 is the size of sample 1, n2 is the
size of sample 2, s1 is the variance of sam-
ple 1, and s2 is the variance of sample 2.

As shown in Table 1, the calculations
result in a t test statistic of 7.44, which,
when compared with the t distribution,
produces a P value of less than .001 (4) by
performing the following equations:

t !
X1 " X2

SX1#X2

!
136.1 " 91.7

SX1#X2

;

SX1#X2

! !n1s1
2 # n2s2

2

n1 # n2 " 2 ! n1 # n2

n1n2

! ! 37$26.3%2 # 32$21.9%2

37 # 32 " 2 ! 37 # 32
37$32%

! 5.96;

t !
X1 " X2

SX1#X2

!
136.1 " 91.7

5.96 ! 7.44.

Assuming a .05 cutoff P value, the null
hypothesis is rejected in favor of the con-
clusion that on average, there is a statis-
tically significant difference in the T2 for
MR imaging of malignant tumors com-
pared with that for benign tumors.

Homogeneity of Variance

The t test assumes that the variances in
each group are equal (termed homoge-
neous). Alternative methods can be used
when this assumption is not valid. Statis-
tical software programs often automati-
cally compute t tests and report results
for both equal and unequal variances.
Alternate approximations of the t test
when the variances are unequal can be
found in a publication by Rosner (5). It is
in this setting that the need to determine
if variances are equal requires another
statistical test.

Determination of whether the assump-
tion of equal variances is valid requires
the use of an F test. The F test involves
conducting a variance ratio test (6). This
calculation tests the null hypothesis that
the variances are equal. If the results of
the F test are statistically significant (P &
.05), this suggests that the variance of the
two groups is not equal. If this occurs,
two recommended solutions are to either
modify the t test to compensate for un-
equal variances or use a nonparametric
test, called the Mann-Whitney test (7).

Paired t Tests

Two samples are paired when each
data point of the first sample is matched
and related to a data point in the second
sample. This is common in studies in
which measurements are collected from
the same patients before and after inter-
vention. Table 2 presents data on the size
of a cancerous tumor in the same patient
before and after receiving a new treat-
ment. The research question represented
in Table 2 is whether the new therapy
affects tumor size. There are two groups

represented by the same seven patients.
One group is represented by the patient
sample before therapy. The second group
is represented by the same sample of pa-
tients after therapy. Before therapy,
mean tumor size was 4.86 cm. After ther-
apy, mean tumor size was 4.50 cm, rep-
resenting a mean decrease of .36 cm. The
t test is used to test the null hypothesis
that the mean difference in tumor size
between the groups before and after ther-
apy does not differ significantly from
zero, with the assumption that this dif-
ference is distributed normally. The test
is used to compare the observed differ-
ence obtained from the sample of seven
patients with the hypothesized value of
no difference in the population. The
paired t test formula is

t !
d " 0

S d
,

where d is the observed mean difference,
and Sd! is the standard error of the ob-
served mean difference. On the basis of a
t test statistic of 5.21, calculated as fol-
lows:

t !
d " 0

Sd
!

0.36 " 0
0.18/! 7

!
0.36
0.068 ! 5.21,

the probability of falsely rejecting the
null hypothesis of no change in size (ie,
the observed difference is due to random
chance) is .002. Hence, the null hypoth-
esis is rejected in favor of the conclusion
that tumors shrank in patients who un-
derwent therapy.

ANOVA

In the previous section, we compared the
means of two normally distributed vari-
ables with the two-sample t test. When
the means of more than two distributions

TABLE 1
Example of the Independent
Samples (unpaired) t Test of T2s
for Benign Hemangiomas and
Malignant Lesions

Parameter
Benign

Hemangiomas
Malignant

Lesions

Mean T2
(msec)
' SD 136.1 ' 26.3 91.7 ' 21.9

No. of
patients 37 32

Note.—t Test results indicate a significant dif-
ference between mean T2 values in the two
groups (t ! 7.44, P & .001) (4).

Calculations for the independent samples t test statistic reported in
Table 1.
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must be compared, one-way ANOVA is
used. With ANOVA, the means of two or
more independent groups (each of which
follow a normal distribution and have sim-
ilar SDs) can be evaluated to ascertain the
relative variability between the groups
compared with the variability within the
groups.

ANOVA calculations are best per-
formed with statistical software (software
easily capable of calculating the t test and
variances include Excel version 5.0 [Mi-
crosoft, Bothell, Wash]; more sophisti-
cated analyses for performance of
ANOVA include Stata version 5.0 [Col-
lege Park, Tex], SPSS [Chicago, Ill], or SAS
[Cary, NC]), but the basic approach is to
compare the means and variances of in-
dependent groups to determine if the
groups are significantly different from
one another. The null hypothesis pro-
poses that the samples come from popu-
lations with the same mean and variance.
The alternative hypothesis is that at least
two of the means are not the same. If
ANOVA is used with two groups, it would
produce results comparable to those ob-
tained with the two independent sam-
ples t test.

Table 3 presents data on vertebral bone
density for three groups of women (8).
The research question represented in Ta-
ble 3 is whether the mean vertebral bone

density varies among the three groups;
hence, ANOVA is used to determine if
there is a significant difference. In this
example, age groups of 46–55 years,
56–65 years, and 66–75 years are used to
represent the three populations for pa-
tient screening. As reported in Table 3,
the mean vertebral bone density is 1.12
for women 46–55 years of age, 1.13 for
women 56–65 years of age, and 1.03 for
women 66–75 years of age. Calculation
of the test statistic involves estimation of
a ratio of the variance between the
groups to the variance within the groups.
The ratio, called the F statistic, is com-
pared with the F sampling distribution
instead of the t distribution discussed ear-
lier (5). An F statistic of 1.0 occurs when
the variance between the groups is the
same as the variance within the groups.

The F statistic is the mean squares be-
tween groups, divided by the mean
squares within groups:

F ! ()nk$Xi " Xg%
2/K " 1*/

+()$Xi " X1%
2 # )$Xi " X2%

2

# )$Xi " X3%
2]/N " K} ,

where Xi is each group mean, Xg is the
grand mean for all the groups [(sum of all
scores)/N], nk is the number of patients in
each group, K is the number of groups,
and N is the total number of scores.

The sum of squares between groups is
)nk(Xi # Xg)

2. The sum of squares within
groups is )(Xi # X1)2 , )(Xi # X2)2 ,
)(Xi # X3)2. The example presented in
Table 3 can be calculated by using the F
statistic formula; however, the descrip-
tive data in Table 3 would require manip-
ulation. The sum of squares within
groups is the variance multiplied by the
number of scores in a group.

The F statistic in Table 3 is 4.499. This
indicates that there is greater variation
between the group means than within
each group. In this case, there is a statis-
tically significant difference (P & .013)
between at least two of the age groups.

THE MULTIPLE COMPARISON
PROBLEM

The vertebral bone density example
could also be analyzed by using three t
tests (46–55-year-old group vs 56–65-
year-old group; 46–55-year-old group vs
66–75-year-old group; and 56–65-year-
old group vs 66–75-year-old group),
which is commonly performed (although
often incorrectly) for simplicity of com-
munication. Similarly, it is not uncom-
mon for investigators who evaluate
many outcomes to report statistical sig-
nificance with P values at the .04 and .02
levels (9,10). This approach, however,
leads to a multiple comparisons problem
(11,12). In this situation, one may falsely
conclude a significant effect where there
is none. In particular, use of a .05 cut-off
value for significance theoretically guar-
antees that if there were 20 pairwise com-
parisons, there will by chance alone ap-
pear to be one with significance at the .05
level (20 - .05 ! 1).

There are corrections for this problem
(11,14). Some are useful for unordered
groups, such as patient height versus sex,
while others are applied to ordered
groups (to evaluate a trend), such as pa-
tient height versus sex when stratified by
age. It is also worth noting that there is a
debate about which method to use, and
some hold the view that this correction is
overused (13). We focus our attention
solely on unordered groups and the most
commonly used correction, the Bonfer-
roni method.

The Bonferroni correction is critical in
adjusting the threshold for significance
(14), which is equal to the desired P value
(eg, .05, .01) divided by the number of
outcome variables being examined. Con-
sequently, when multiple statistical tests
are conducted between the same vari-
ables, which would occur if multiple t

TABLE 2
Example of the Paired t Test to Evaluate Tumor Size before and after Therapy
in Seven Patients

Patient No.

Tumor Size (cm)

Change (cm)Before Therapy After Therapy

1 5.3 5.0 0.3
2 4.4 4.0 0.4
3 4.9 4.5 0.4
4 6.4 6.0 0.4
5 3.4 3.0 0.4
6 5.0 5.0 0.0
7 4.6 4.0 0.6

Mean size ' SD 4.86 ' 0.91 4.50 ' 0.96 0.36 ' 0.18

Note.—The calculated statistic suggests a significant difference between the means before and
after treatment (t ! 5.21, P & .002).

TABLE 3
Example of ANOVA to Compare Differences in Vertebral Density in Three Age
Groups of Women

Parameter

Age Groups

46–55 Years 56–65 Years 66–75 Years

Mean density ' SD 1.12 ' 0.18 1.13 ' 0.20 1.03 ' 0.19
Sample size 46 63 50

Note.—F ! 4.499, P & .013 (8).
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tests were conducted for a comparison of
age and bone density, the significance
cut-off value is often adjusted to repre-
sent a more conservative estimate of sta-
tistical significance. One limitation of the
Bonferroni correction is that by reducing
the level of significance associated with
each test, we have reduced the power of
the test, thereby increasing the chance of
incorrectly keeping the null hypothesis.

Table 4 presents the results of t tests by
using the same data presented in Table 3.
Use of the common threshold of .05
would result in the conclusion that there
is a significant difference in vertebral
bone density between those 46–55 years
of age and those 66–75 years of age (P !
.021) and also between those 56–65
years of age and those 66–75 years of age
(P ! .006). However, compensating for
multiple comparisons would reduce the
threshold from .05 to .017 (.05/3). This
results in only the comparison between
those 56–65 years of age and those
66–75 years of age, which reaches statis-
tical significance.

The far right column of Table 4 shows
the exact probability of error with use of
the Bonferroni adjustment provided by
SPSS statistical software. The Bonferroni
adjustment is a common option in statis-
tical software when using ANOVA to de-
termine if the group means are different
from each other. The P value for each
comparison is adjusted so it can be com-
pared directly with the P & .05 cutoff.
Again, by using P & .05 as the standard
for significance, the results of the Bonfer-
roni adjustment listed in Table 4 indicate
that the only statistically significant dif-
ference is between those 56–65 years of
age and those 66–75 years of age (P !
.015).

In summary, it is often necessary to
test hypotheses that relate a continuous
outcome to an intervention—for exam-
ple, tumor size versus treatment options.
Depending on the number of groups
(more than two) being analyzed, the
ANOVA technique may be used to test
for an effect, or a t test may be used if
there are only two groups. A paired t test
is used to examine two groups if the con-
trol population is linked on an individual

basis, such as when a pre- and posttreat-
ment comparison is made in the same
patients. For radiologists, the compari-
sons may involve a new imaging tech-
nique, the use of contrast material, or a
new MR imaging sequence.

Fundamental limitations in using these
tests include the understanding that they
generate an estimate of the probability
that the differences observed would be
due to random chance alone. This esti-
mate is based not only on differences be-
tween means but also on sample variabil-
ity and sample size. In addition, the
assumption that the underlying popula-
tion is distributed normally is not always
appropriate—in which case, special non-
parametric techniques are available. In a
more common misapplication, the t test
is used inappropriately to compare two
groups of categoric or binary data. Fi-
nally, use of the tests presented in this
article is limited to comparisons between
two variables (such as patient age and
bone density), which may often oversim-
plify much more complex relationships.
More complex relationships are best an-
alyzed with other techniques, such as
multiple regression or ANOVA.
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Sample Size Estimation: How
Many Individuals Should Be
Studied?1

The number of individuals to include in a research study, the sample size of the
study, is an important consideration in the design of many clinical studies. This
article reviews the basic factors that determine an appropriate sample size and
provides methods for its calculation in some simple, yet common, cases. Sample size
is closely tied to statistical power, which is the ability of a study to enable detection
of a statistically significant difference when there truly is one. A trade-off exists
between a feasible sample size and adequate statistical power. Strategies for reduc-
ing the necessary sample size while maintaining a reasonable power will also be
discussed.
© RSNA, 2003

How many individuals will I need to study? This question is commonly asked by the
clinical investigator and exposes one of many issues that are best settled before actually
carrying out a study. Consultation with a statistician is worthwhile in addressing many
issues of study design, but a statistician is not always readily available. Fortunately, many
studies in radiology have simple designs for which determination of an appropriate sample
size—the number of individuals that should be included for study—is relatively straight-
forward.

Superficial discussions of sample size determination are included in typical introductory
biostatistics texts (1–3). The goal of this article is to augment these introductory discus-
sions with additional practical material. First, the need for considering sample size will be
reviewed. Second, the study design parameters affecting sample size will be identified.
Third, formulae for calculating appropriate sample sizes for some common study designs
will be defined. Finally, some advice will be offered on what to do if the calculated sample
size is impracticably large. To assist the reader in performing the calculations described in
this article and to encourage experimentation with them, a World Wide Web page has
been developed that closely parallels the equations presented in this article. This page can
be found at www.rad.jhmi.edu/jeng/javarad/samplesize/.

Even if a statistician is readily available, the investigator may find that a working
knowledge of the factors affecting sample size will result in more fruitful communication
with the statistician and in better research design. A working knowledge of these factors is
also required to use one of the numerous Web pages (4–6) and computer programs (7–9)
that have been developed for calculating appropriate sample sizes. It should be noted that
Web pages for calculating sample size are typically limited for use in situations involving
the well-known parametric statistics, which are those involving the calculation of summary
means, proportions, or other parameters of an assumed underlying statistical distribution
such as the normal, Student t, or binomial distributions. The calculation of sample size for
nonparametric statistics such as the Wilcoxon rank sum test is performed by some
computer programs (7,9).

IMPORTANCE OF SAMPLE SIZE

In a comparative research study, the means or proportions of some characteristic in two or
more comparison groups are measured. A statistical test is then applied to determine
whether or not there is a significant difference between the means or proportions observed
in the comparison groups. We will first consider the comparative type of study.
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Sample size is important primarily be-
cause of its effect on statistical power. Sta-
tistical power is the probability that a
statistical test will indicate a significant
difference when there truly is one. Statis-
tical power is analogous to the sensitivity
of a diagnostic test (10), and one could
mentally substitute the word “sensitivi-
ty” for the word “power” during statistical
discussions.

In a study comparing two groups of
individuals, the power (sensitivity) of a
statistical test must be sufficient to enable
detection of a statistically significant dif-
ference between the two groups if a dif-
ference is truly present. This issue be-
comes important if the study results were
to demonstrate no statistically significant
difference. If such a negative result were
to occur, there would be two possible
interpretations. The first interpretation is
that the results of the statistical test are
correct and that there truly is no statisti-
cally significant difference (a true-nega-
tive result). The second interpretation is
that the results of the statistical test are
erroneous and that there is actually an
underlying difference, but the study was
not powerful enough (sensitive enough)
to find the difference, yielding a false-
negative result. In statistical terminol-
ogy, a false-negative result is known as a
type II error. An adequate sample size gives
a statistical test enough power (sensitiv-
ity) so that the first interpretation (that
the results are true-negative) is much
more plausible than the second interpre-
tation (that a type II error occurred) in
the event no statistically significant dif-
ference is found in the study.

It is well known that many published
clinical research studies possess low sta-
tistical power owing to inadequate sam-
ple size or other design issues (11,12).
One could argue that it is as wasteful and
inappropriate to conduct a study with
inadequate power as it is to obtain a di-
agnostic test of insufficient sensitivity to
rule out a disease.

PARAMETERS THAT
DETERMINE APPROPRIATE
SAMPLE SIZE

An appropriate sample size generally de-
pends on five study design parameters:
minimum expected difference (also known
as the effect size), estimated measurement
variability, desired statistical power, sig-
nificance criterion, and whether a one- or
two-tailed statistical analysis is planned.

Minimum Expected Difference

This parameter is the smallest measured
difference between comparison groups that
the investigator would like the study to
detect. As the minimum expected differ-
ence is made smaller, the sample size
needed to detect statistical significance
increases. The setting of this parameter is
subjective and is based on clinical judg-
ment and experience with the problem
being investigated. For example, suppose
a study is designed to compare a standard
diagnostic procedure of 80% accuracy with
a new procedure of unknown but poten-
tially higher accuracy. It would probably
be clinically unimportant if the new pro-
cedure were only 81% accurate, but sup-
pose the investigator believes that it
would be a clinically important improve-
ment if the new procedure were 90% ac-
curate. Therefore, the investigator would
choose a minimum expected difference
of 10% (0.10). The results of pilot studies
or a literature review can also guide the
selection of a reasonable minimum dif-
ference.

Estimated Measurement Variability

This parameter is represented by the
expected SD in the measurements made
within each comparison group. As statis-
tical variability increases, the sample size
needed to detect the minimum difference
increases. Ideally, the estimated measure-
ment variability should be determined
on the basis of preliminary data collected
from a similar study population. A review
of the literature can also provide esti-
mates of this parameter. If preliminary
data are not available, this parameter may
have to be estimated on the basis of sub-
jective experience, or a range of values
may be assumed. A separate estimate of
measurement variability is not required
when the measurement being compared
is a proportion (in contrast to a mean),
because the SD is mathematically derived
from the proportion.

Statistical Power

This parameter is the power that is de-
sired from the study. As power is increased,
sample size increases. While high power is
always desirable, there is an obvious
trade-off with the number of individuals
that can feasibly be studied, given the
usually fixed amount of time and re-
sources available to conduct a study. In
randomized controlled trials, the statisti-
cal power is customarily set to a number
greater than or equal to 0.80, with many

clinical trial experts now advocating a
power of 0.90.

Significance Criterion

This parameter is the maximum P
value for which a difference is to be con-
sidered statistically significant. As the sig-
nificance criterion is decreased (made
more strict), the sample size needed to
detect the minimum difference increases.
The significance criterion is customarily
set to .05.

One- or Two-tailed Statistical
Analysis

In a few cases, it may be known before
the study that any difference between
comparison groups is possible in only
one direction. In such cases, use of a one-
tailed statistical analysis, which would re-
quire a smaller sample size for detection
of the minimum difference than would a
two-tailed analysis, may be considered.
The sample size of a one-tailed design
with a given significance criterion—for
example, !—is equal to the sample size of
a two-tailed design with a significance
criterion of 2!, all other parameters being
equal. Because of this simple relationship
and because truly appropriate one-tailed
analyses are rare, a two-tailed analysis is
assumed in the remainder of this article.

SAMPLE SIZES FOR
COMPARATIVE RESEARCH
STUDIES

With knowledge of the design parame-
ters detailed in the previous section, the
calculation of an appropriate sample size
simply involves selecting an appropriate
equation. For a study comparing two
means, the equation for sample size (13)
is

N !
4"2# zcrit " zpwr$

2

D2 , (1)

where N is the total sample size (the sum
of the sizes of both comparison groups),
" is the assumed SD of each group (as-
sumed to be equal for both groups), the
zcrit value is that given in Table 1 for the
desired significance criterion, the zpwr
value is that given in Table 2 for the de-
sired statistical power, and D is the min-
imum expected difference between the
two means. Both zcrit and zpwr are cutoff
points along the x axis of a standard nor-
mal probability distribution that demar-
cate probabilities matching the specified
significance criterion and statistical power,
respectively. The two groups that make up
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N are assumed to be equal in number,
and it is assumed that two-tailed statisti-
cal analysis will be used. Note that N de-
pends only on the difference between the
two means; it does not depend on the
magnitude of either one.

As an example, suppose a study is pro-
posed to compare a renovascular proce-
dure versus medical therapy in lowering
the systolic blood pressure of patients
with hypertension secondary to renal ar-
tery stenosis. On the basis of results of
preliminary studies, the investigators es-
timate that the vascular procedure may
help lower blood pressure by 20 mm Hg,
while medical therapy may help lower
blood pressure by only 10 mm Hg. On
the basis of their clinical judgment, the
investigators might also argue that the
vascular procedure would have to be
twice as effective as medical therapy to
justify the higher cost and discomfort of

the vascular procedure. On the basis of
results of preliminary studies, the SD for
blood pressure lowering is estimated to
be 15 mm Hg. According to the normal
distribution, this SD indicates an expec-
tation that 95% of the patients in either
group will experience a blood pressure
lowering within 30 mm Hg (2 SDs) of the
mean. A significance criterion of .05 and
power of 0.80 are chosen. With these as-
sumptions, D % 20 & 10 % 10 mm Hg,
" % 15 mm Hg, zcrit % 1.960 (from Table
1), and zpwr % 0.842 (from Table 2). Equa-
tion (1) yields a sample size of N % 70.6.
Therefore, a total of 70 patients (round-
ing N to the nearest even number) should
be enrolled in the study: 35 to undergo
the vascular procedure and 35 to receive
medical therapy.

For a study in which two proportions
are compared with a '2 test or a z test,
which is based on the normal approxi-
mation to the binomial distribution, the
equation for sample size (14) is

N ! 2 ! (zcrit!2p!#1 # p!$

) zpwr!p1#1 # p1$ " p2#1 # p2$ *2/D2 ,

(2)

where p1 and p2 are pre-study estimates of
the two proportions to be compared, D %
"p1 & p2" (ie, the minimum expected dif-
ference), p % (p1 ) p2)/2, and N, zcrit, and
zpwr are defined as they are for Equation
(1). The two groups comprising N are as-
sumed to be equal in number, and it is
assumed that two-tailed statistical analy-
sis will be used. Note that in this case, N
depends not only on the difference be-
tween the two proportions but also on
the magnitude of the proportions them-
selves. Therefore, Equation (2) requires
the investigator to estimate p1 and p2, as
well as their difference, before perform-
ing the study. However, Equation (2)
does not require an independent esti-
mate of SD because it is calculated from
p1 and p2 within the equation.

As an example, suppose a standard di-
agnostic procedure has an accuracy of
80% for the diagnosis of a certain disease.
A study is proposed to evaluate a new
diagnostic procedure that may have
greater accuracy. On the basis of their
experience, the investigators decide that
the new procedure would have to be at
least 90% accurate to be considered sig-
nificantly better than the standard proce-
dure. A significance criterion of .05 and a
power of 0.90 are chosen. With these as-
sumptions, p1 % 0.80, p2 % 0.90, D %
0.10, p % 0.85, zcrit % 1.960, and zpwr %
0.842. Equation (2) yields a sample size of
N % 398. Therefore, a total of 398 pa-

tients should be enrolled: 199 to undergo
the standard diagnostic procedure and
199 to undergo the new one.

SAMPLE SIZES FOR
DESCRIPTIVE STUDIES

Not all research studies involve the com-
parison of two groups. The purpose of
many studies is simply to describe, with
means or proportions, one or more char-
acteristics in one particular group. In
these types of studies, known as descrip-
tive studies, sample size is important be-
cause it affects how precise the observed
means or proportions are expected to be.
In the case of a descriptive study, the min-
imum expected difference reflects the dif-
ference between the upper and lower
limit of an expected confidence interval,
which is described with a percentage. For
example, a 95% CI indicates the range in
which 95% of results would fall if a study
were to be repeated an infinite number of
times, with each repetition including the
number of individuals specified by the
sample size.

In studies designed to estimate a mean,
the equation for sample size (2,15) is

N !
4"2(zcrit)2

D2 , (3)

where N is the sample size of the single
study group, " is the assumed SD for the
group, the zcrit value is that given in Ta-
ble 1, and D is the total width of the
expected CI. Note that Equation (3) does
not depend on statistical power because
this concept only applies to statistical com-
parisons.

As an example, suppose a fetal sonog-
rapher wants to determine the mean fetal
crown-rump length in a group of preg-
nancies. The sonographer would like the
limits of the 95% confidence interval to
be no more than 1 mm above or 1 mm
below the mean crown-rump length of
the group. From previous studies, it is
known that the SD for the measurement
is 3 mm. Based on these assumptions,
D % 2 mm, " % 3 mm, and zcrit % 1.960
(from Table 1). Equation (3) yields a sam-
ple size of N % 35. Therefore, 35 fetuses
should be examined in the study.

In studies designed to measure a char-
acteristic in terms of a proportion, the
equation for sample size (2,15) is

N !
4(zcrit)2p#1 # p$

D2 , (4)

where p is a pre-study estimate of the
proportion to be measured, and N, zcrit,
and D are defined as they are for Equa-

TABLE 1
Standard Normal Deviate (zcrit)
Corresponding to Selected
Significance Criteria and CIs

Significance Criterion* zcrit Value†

.01 (99) 2.576

.02 (98) 2.326

.05 (95) 1.960

.10 (90) 1.645

* Numbers in parentheses are the probabili-
ties (expressed as a percentage) associated
with the corresponding CIs. Confidence
probability is the probability associated with
the corresponding CI.

† A stricter (smaller) significance criterion is
associated with a larger zcrit value. Values not
shown in this table may be calculated in Excel
version 97 (Microsoft, Redmond, Wash) by us-
ing the formula zcrit % NORMSINV(1&(P/2)),
where P is the significance criterion.

TABLE 2
Standard Normal Deviate (zpwr)
Corresponding to Selected
Statistical Powers

Statistical Power zpwr Value*

.80 0.842

.85 1.036

.90 1.282

.95 1.645

* A higher power is associated with a larger
value for zpwr. Values not shown in this table
may be calculated in Excel version 97 (Mi-
crosoft, Redmond, Wash) by using the for-
mula zpwr % NORMSINV(power). For calculat-
ing power, the inverse formula is power %
NORMSDIST(zpwr), where zpwr is calculated
from Equation (1) or Equation (2) by solving
for zpwr.
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tion (3). Like Equation (2), Equation (4)
depends not only on the width of the
expected CI but also on the magnitude of
the proportion itself. Also like Equation
(2), Equation (4) does not require an in-
dependent estimate of SD because it is
calculated from p within the equation.

As an example, suppose an investigator
would like to determine the accuracy of a
diagnostic test with a 95% CI of +10%.
Suppose that, on the basis of results of
preliminary studies, the estimated accu-
racy is 80%. With these assumptions,
D % 0.20, p % 0.80, and zcrit % 1.960.
Equation (4) yields a sample size of N %
61. Therefore, 61 patients should be ex-
amined in the study.

MINIMIZING THE SAMPLE SIZE

Now that we understand how to calcu-
late sample size, what if the sample size
we calculate is too large to be feasibly
studied? Browner et al (16) list a number
of strategies for minimizing the sample
size. These strategies are briefly discussed
in the following paragraphs.

Use Continuous Measurements
Instead of Categories

Because a radiologic diagnosis is often
expressed in terms of a binary result, such
as the presence or absence of a disease, it
is natural to convert continuous mea-
surements into categories. For example,
the size of a lesion might be encoded as
“small” or “large.” For a sample of fixed
size, the use of the actual measurement
rather than the proportion in each cate-
gory yields more power. This is because
statistical tests that incorporate the use of
continuous values are mathematically
more powerful than those used for pro-
portions, given the same sample size.

Use More Precise Measurements

For studies in which Equation (1) or
Equation (2) applies, any way to increase
the precision (decrease the variability) of
the measurement process should be sought.
For some types of research, precision can
be increased by simply repeating the
measurement. More complex equations
are necessary for studies involving re-
peated measurements in the same indi-
viduals (17), but the basic principles are
similar.

Use Paired Measurements

Statistical tests like the paired t test are
mathematically more powerful for a
given sample size than are unpaired tests

because in paired tests, each measure-
ment is matched with its own control.
For example, instead of comparing the
average lesion size in a group of treated
patients with that in a control group,
measuring the change in lesion size in
each patient after treatment allows each
patient to serve as his or her own control
and yields more statistical power. Equa-
tion (1) can still be used in this case. D
represents the expected change in the
measurement, and " is the expected SD
of this change. The additional power and
reduction in sample size are due to the SD
being smaller for changes within individ-
uals than for overall differences between
groups of individuals.

Use Unequal Group Sizes

Equations (1) and (2) involve the as-
sumption that the comparison groups are
equal in size. Although it is statistically
most efficient if the two groups are equal
in size, benefit is still gained by studying
more individuals, even if the additional
individuals all belong to one of the groups.
For example, it may be feasible to recruit
additional individuals into the control
group even if it is difficult to recruit more
individuals into the noncontrol group.
More complex equations are necessary
for calculating sample sizes when com-
paring means (13) and proportions (18)
of unequal group sizes.

Expand the Minimum Expected
Difference

Perhaps the minimum expected differ-
ence that has been specified is unneces-
sarily small, and a larger expected differ-
ence could be justified, especially if the
planned study is a preliminary one. The
results of a preliminary study could be
used to justify a more ambitious follow-up
study of a larger number of individuals
and a smaller minimum difference.

DISCUSSION

The formulation of Equations (1–4) in-
volves two statistical assumptions which
should be kept in mind when these equa-
tions are applied to a particular study. First,
it is assumed that the selection of individ-
uals is random and unbiased. The decision
to include an individual in the study can-
not depend on whether or not that indi-
vidual has the characteristic or outcome
being studied. Second, in studies in which
a mean is calculated from measurements of
individuals, the measurements are as-
sumed to be normally distributed. Both of

these assumptions are required not only by
the sample size calculation method, but
also by the statistical tests themselves (such
as the t test). The situations in which Equa-
tions (1–4) are appropriate all involve para-
metric statistics. Different methods for de-
termining sample size are required for
nonparametric statistics such as the Wil-
coxon rank sum test.

Equations for calculating sample size,
such as Equations (1) and (2), also pro-
vide a method for determining statistical
power corresponding to a given sample
size. To calculate power, solve for zpwr in
the equation corresponding to the design
of the study. The power can be then de-
termined by referring to Table 2. In this
way, an “observed power” can be calcu-
lated after a study has been completed,
where the observed difference is used in
place of the minimum expected differ-
ence. This calculation is known as retro-
spective power analysis and is sometimes
used to aid in the interpretation of the
statistical results of a study. However, ret-
rospective power analysis is controversial
because it can be shown that observed
power is completely determined by the P
value and therefore cannot add any ad-
ditional information to its interpretation
(19). Power calculations are most appro-
priate when they incorporate a minimum
difference that is stated prospectively.

The accuracy of sample size calcula-
tions obviously depends on the accuracy
of the estimates of the parameters used in
the calculations. Therefore, these calcula-
tions should always be considered esti-
mates of an absolute minimum. It is usu-
ally prudent for the investigator to plan
to include more than the minimum
number of individuals in a study to com-
pensate for loss during follow-up or other
causes of attrition.

Sample size is best considered early in
the planning of a study, when modifica-
tions in study design can still be made.
Attention to sample size will hopefully
result in a more meaningful study whose
results will eventually receive a high pri-
ority for publication.
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Correlation and Simple Linear
Regression1

In this tutorial article, the concepts of correlation and regression are reviewed and
demonstrated. The authors review and compare two correlation coefficients, the
Pearson correlation coefficient and the Spearman !, for measuring linear and non-
linear relationships between two continuous variables. In the case of measuring the
linear relationship between a predictor and an outcome variable, simple linear
regression analysis is conducted. These statistical concepts are illustrated by using a
data set from published literature to assess a computed tomography–guided inter-
ventional technique. These statistical methods are important for exploring the
relationships between variables and can be applied to many radiologic studies.
© RSNA, 2003

Results of clinical studies frequently yield data that are dependent of each other (eg, total
procedure time versus the dose in computed tomographic [CT] fluoroscopy, signal-to-
noise ratio versus number of signals acquired during magnetic resonance imaging, and
cigarette smoking versus lung cancer). The statistical concepts correlation and regression,
which are used to evaluate the relationship between two continuous variables, are re-
viewed and demonstrated in this article.

Analyses between two variables may focus on (a) any association between the variables,
(b) the value of one variable in predicting the other, and (c) the amount of agreement.
Agreement will be discussed in a future article. Regression analysis focuses on the form of
the relationship between variables, while the objective of correlation analysis is to gain
insight into the strength of the relationship (1,2). Note that these two techniques are used
to investigate relationships between continuous variables, whereas the "2 test is an exam-
ple of a test for association between categorical variables. Continuous variables, such as
procedure time, patient age, and number of lesions, have no gaps on the measurement
scale. In contrast, categorical variables, such as patient sex and tissue classification based
on segmentation, have gaps in their possible values. These two types of variables and the
assumptions about their measurement scales were reviewed and distinguished in an article
by Applegate and Crewson (3) published earlier in this Statistical Concepts Series in
Radiology.

Specifically, the topics covered herein include two commonly used correlation coeffi-
cients, the Pearson correlation coefficient (4,5) and the Spearman ! (6–10) for measuring
linear and nonlinear relationship, respectively, between two continuous variables. Corre-
lation analysis is often conducted in a retrospective or observational study. In a clinical
trial, on the other hand, the investigator may also wish to manipulate the values of one
variable and assess the changes in values of another variable. To evaluate the relative
impact of the predictor variable on the particular outcome, simple regression analysis is
preferred. We illustrate these statistical concepts with existing data to assess patient skin
dose based on total procedure time by using a quick-check method in CT fluoroscopy–
guided abdominal interventions (11).

These statistical methods are useful tools for assessing the relationships between con-
tinuous variables collected from a clinical study. However, it is also important to distin-
guish these statistical methods. While they are similar mathematically, their purposes are
different. Correlation analysis is generally overused. It is often interpreted incorrectly (to
establish “causation”) and should be reserved for generating hypotheses rather than for
testing them. On the other hand, regression modeling is a more useful statistical technique
that allows us to assess the strength of the relationships in the data and the uncertainty in
the model by using confidence intervals (12,13).
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CORRELATION

The purpose of correlation analysis is
to measure and interpret the strength of
a linear or nonlinear (eg, exponential,
polynomial, and logistic) relationship be-
tween two continuous variables. When
conducting correlation analysis, we use
the term association to mean “linear asso-
ciation” (1,2). Herein, we focus on the
Pearson and Spearman ! correlation co-
efficients. Both correlation coefficients
take on values between #1 and $1, rang-
ing from being negatively correlated (#1)
to uncorrelated (0) to positively corre-
lated ($1). The sign of the correlation
coefficient (ie, positive or negative) de-
fines the direction of the relationship.
The absolute value indicates the strength
of the correlation (Table 1, Fig 1). We
elaborate on two correlation coefficients,
linear (eg, Pearson) and rank (eg, Spear-
man), that are commonly used for mea-
suring linear and general relationships
between two variables.

Linear Correlation

The Pearson correlation coefficient is
also known as the sample correlation co-
efficient (r), product-moment correlation
coefficient, or coefficient of correlation
(14). It was introduced by Galton in 1877
(15,16) and developed later by Pearson
(17). It measures the linear relationship
between two random variables. For ex-
ample, when the value of the predictor is
manipulated (increased or decreased) by
a fixed amount, the outcome variable
changes proportionally (linearly). A lin-
ear correlation coefficient can be com-
puted by means of the data and their
sample means (Appendix A). When a sci-
entific study is planned, the required
sample size may be computed on the ba-
sis of a certain hypothesized value with
the desired statistical power at a specified
level of significance (Appendix B) (18).

Rank Correlation

The Spearman ! is the sample correla-
tion coefficient (rs) of the ranks (the rel-
ative order) based on continuous data
(19,20). It was first introduced by Spear-
man in 1904 (6). The Spearman ! is used
to measure the monotonic relationship
between two variables (ie, whether one
variable tends to take either a larger or
smaller value, though not necessarily lin-
early) by increasing the value of the other
variable.

Linear versus Rank Correlation
Coefficients

The Pearson correlation coefficient ne-
cessitates use of interval or continuous
measurement scales of the measured out-
come in the study population. In con-
trast, rank correlations also work well
with ordinal rating data, and continuous
data are reduced to their ranks (Appendix
C) (20,21). The rank procedure will also
be illustrated briefly with our example
data. The smallest value in the sample
has rank 1, and the largest has the high-
est rank. In general, rank correlations are
not easily influenced by the presence of
skewed data or data that are highly vari-
able.

Statistical Hypothesis Tests for a
Correlation Coefficient

The null hypothesis states that the un-
derlying linear correlation has a hypoth-
esized value, !0. The one-sided alterna-
tive hypothesis is that the underlying
value exceeds (or is less than) !0. When
the sample size (n) of the paired data is
large (n ! 30 for each variable), the stan-
dard error (s) of the linear correlation (r)
is approximately s(r) % (1 # r2)/&n. The
test statistic value (r # !0)/s(r) may be
computed by means of the z test (22). If
the P value is below .05, the null hypoth-
esis is rejected. The P value based on the

Spearman ! can be found in the literature
(20,21).

Limitations and Precautions

It is worth noting that even if two vari-
ables (eg, cigarette smoking and lung
cancer) are highly correlated, it is not
sufficient proof of causation. One vari-
able may cause the other or vice versa, or
a third factor is involved, or a rare event
may have occurred. To conclude causa-
tion, the causal variables must precede
the variable it causes, and several con-
ditions must be met (eg, reversibility,
strength, and exposure response on the
basis of the Bradford-Hill criteria or the
Rubin causal model) (23–26).

SIMPLE LINEAR REGRESSION

The purpose of simple regression analysis
is to evaluate the relative impact of a
predictor variable on a particular out-
come. This is different from a correlation
analysis, where the purpose is to examine
the strength and direction of the rela-

TABLE 1
Interpretation of Correlation
Coefficient

Correlation
Coefficient Value

Direction and Strength
of Correlation

#1.0 Perfectly negative
#0.8 Strongly negative
#0.5 Moderately negative
#0.2 Weakly negative

0.0 No association
$0.2 Weakly positive
$0.5 Moderately positive
$0.8 Strongly positive
$1.0 Perfectly positive

Note.—The sign of the correlation coefficient
(ie, positive or negative) defines the direction
of the relationship. The absolute value indi-
cates the strength of the correlation.

Figure 1. Scatterplots of four sets of data generated by means of the following Pearson correlation coefficients (from left to right): r % 0
(uncorrelated data), r % 0.8 (strongly positively correlated), r % 1.0 (perfectly positively correlated), and r % #1 (perfectly negatively correlated).
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tionship between two random variables.
In this article, we deal with only linear
regression of one continuous variable on
another continuous variable with no
gaps on each measurement scale (3).
There are other types of regression (eg,
multiple linear, logistic, and ordinal)
analyses, which will be provided in a fu-
ture article in this Statistical Concepts
Series in Radiology.

A simple regression model contains
only one independent (explanatory) vari-
able, Xi, for i % 1, . . ., n subjects, and is
linear with respect to both the regression
parameters and the dependent variable.
The corresponding dependent (outcome)
variable is labeled. The model is ex-
pressed as

Yi % a $ bXi $ ei, (1)

where the regression parameter a is the in-
tercept (on the y axis), and the regression
parameter b is the slope of the regression
line (Fig 2). The random error term ei is
assumed to be uncorrelated, with a mean
of 0 and constant variance. For conve-
nience in inference and improved effi-
ciency in estimation (27), analyses often
incur an additional assumption that the
errors are distributed normally. Transfor-
mation of the data to achieve normality
may be applied (28,29). Thus, the word line
(linear, independent, normal, equal vari-
ance) summarizes these requirements.

Typical steps for regression model anal-
ysis are the following: (a) determine if the
assumptions underlying a normal relation-
ship are met in the data, (b) obtain the
equation that best fits the data, (c) evaluate
the equation to determine the strength of

the relationship for prediction and estima-
tion, and (d) assess whether the data fit
these criteria before the equation is applied
for prediction and estimation.

Least Squares Method

The main goal of linear regression is to
fit a straight line through the data that
predicts Y based on X. To estimate the in-
tercept and slope regression parameters
that determine this line, the least squares
method is commonly used. It is not neces-
sary for the errors to have a normal distri-
bution, although the regression analysis is
more efficient with this assumption (27).
With this regression method, a set of re-
gression parameters are found such that
the sum of squared residuals (ie, the differ-
ences between the observed values of the
outcome variable and the fitted values) are
minimized (14). The fitted y value is then
computed as a function of the given x
value and the estimated intercept and
slope regression parameter (Appendix D).
For example, in Equation (1), once the es-
timates of a and b are obtained from the
regression analysis, the predicted y value at
any given x value is calculated as a $ bx.

Coefficient of Determination, R2

It is meaningful to interpret the value of
the Pearson correlation coefficient r by
squaring it; hence, the term R-square (R2)
or coefficient of determination. This mea-
sure (with a range of 0–1) is the fraction of
the variability in Y that can be explained
by the variability in X through their linear
relationship, or vice versa. That is, R2 %
SSregression/SStotal, where SS stands for the
sum of squares. Note that R2 is calculated
only on the basis of the Pearson correlation
coefficient in the linear regression analysis.
Thus, it is not appropriate to compute R2

on the basis of rank correlation coefficients
such as the Spearman !.

Statistical Hypothesis Tests

There are several hypotheses in the
context of regression analysis, for exam-
ple, to test if the slope of the regression
line is b % 0 (hypothesis, there is no lin-
ear association between Y and X). One
may also test whether intercept a takes
on a certain value. The significance of the
effects of the intercept and slope may
also be computed by means of a Student
t statistic introduced earlier in this Statis-
tical Concepts Series in Radiology (30).

Limitations and Precautions

The following understandings should
be considered when regression analysis is

performed. (a) To understand whether
the assumptions have been met, deter-
mine the magnitude of the gap between
the data and the assumptions of the
model. (b) No matter how strong a rela-
tionship is demonstrated with regression
analysis, it should not be interpreted as
causation (as in the correlation analysis).
(c) The regression should not be used to
predict or estimate outside the range of
values of the independent variable of the
sample (eg, extrapolation of radiation
cancer risk from the Hiroshima data to
that of diagnostic radiologic tests).

AN EXAMPLE: DOSE VERSUS
TOTAL PROCEDURE TIME
IN CT FLUOROSCOPY

We applied these statistical methods to
help assess the benefit of the use of CT
fluoroscopy to guide interventions in the
abdomen (11). During CT fluoroscopy–
guided interventions, one might postu-
late that the radiation dose received by a
patient is related to (or correlated with)
the total procedure time, because the
more difficult the procedure is, the more
CT fluoroscopic scanning is required,
which means a longer procedure time.
The rationale was to assess whether radi-
ation dose could be estimated by simply
measuring the total CT fluoroscopic pro-
cedure time, with the null hypothesis
that the slope of the regression line is 0.

Earlier, we discussed two methods to
target lesions with CT fluoroscopy. In
one method, continuous CT scanning is
used during needle placement. In the
other method, short CT scanning is used
to image the needle after it is placed. The
latter method, the so-called quick-check
method, has been adopted almost exclu-
sively at our institution. Now, we demon-
strate correlation and regression analyses
based on a subset of the interventional
procedures (n % 19). With the quick-
check method, we examine the relation-
ship between total procedure time (in
minutes) and dose (in rads) on a natural
log scale. We also examine the marginal
ranks of the x (log of total time) and y
(log of dose) components (Table 2). For
convenience, the x data are given in as-
cending order.

In Table 2, each set of rank data is
derived by first placing the 19 observa-
tions in each sample in ascending order
and then assigning ranks 1–19. Ties are
broken by means of averaging the respec-
tive adjacent ranks. Finally, the ranks are
identified for the observations of each of
the paired x and y samples.

Figure 2. Simple linear regression model
shows that the expectation of the dependent
variable Y is linear in the independent variable
X, with an intercept a % 1.0 and a slope b %
2.0.
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The natural log (ln) transformation of
the total time is used to make the data
appear normal, for more efficient analy-
sis (Appendix D), with normality verified
statistically (31). However, normality is
not necessary in the subsequent regres-
sion analysis. We created a scatterplot of
the data, with the log of dose (ln[rad]) on
the x axis and the log of total time (ln-
[minutes]) on the y axis (Fig 3).

For illustration purposes, we will con-
duct both correlation and regression
analyses; however, the choice of analysis
depends on the aim of research. For ex-
ample, if the investigators wish to assess
whether there is a relationship between
time and dose, then correlation analysis
is appropriate. In comparison, if the in-
vestigators wish to evaluate the impact of
the total time on the resulting dose, then
regression analysis is preferred.

Correlations

To compute the Spearman ! with a Pear-
son correlation coefficient of r % 0.85, the
marginal ranks of time and dose were de-
rived separately; consequently, rs % 0.84.
Both correlation coefficients confirm that
the log of total time and the log of dose are
correlated strongly and positively.

Regression

We first conducted a simple linear re-
gression analysis of the data on a log scale
(n % 19); results are shown in Table 3. The
value calculated for R2 was 0.73, which
suggests that 73% of the variability of the
data could be explained by the linear re-
gression.

The regression line, expressed in the
form given in Equation (1), is Y %
#9.28 $ 2.83X, where the predictor vari-
able X represents the log of total time,
and the outcome variable Y represents
the log of dose. The estimated regression
parameters are a % #9.28 (intercept) and
b % 2.83 (slope) (Fig 4). This regression
line can be interpreted as follows: At X %
0, the value of Y is #9.28. For every one-
unit increase in X, the value of Y will
increase on average by 2.83. Effects of
both the intercept and slope are statisti-
cally significant (P ' .005) (Excel; Mi-
crosoft, Redmond, Wash); therefore, the
null hypothesis (H0, the dose remains
constant as the total procedure time in-
creases) is rejected. Thus, we confirm the
alternative hypothesis (H1, the dose in-
creases in the total procedure time).

The regression line may be used to give
predicted values of Y. For example, if in a
future CT fluoroscopy procedure, the log

total time is specified at x % 4 (translated to
e4 % 55 minutes, approximately), then the
log dose that is to be applied is approxi-
mately y % #9.28 $ 2.83 ( 4 % 2.04 (trans-
lated to e2.04 % 7.69 rad). On the other
hand, if the log total time is specified at x %
4.5 (translated to e4.5 % 90 minutes, ap-
proximately), then the log dose that is to
be applied is approximately y % #9.28 $
2.83 ( 4.5 % 3.46 (translated to e3.46 %
31.82 rad). Such prediction can be useful
for future clinical practice.

SUMMARY AND REMARKS

Two important statistical concepts, cor-
relation and regression, which are used

commonly in radiology research, are re-
viewed and demonstrated herein. Addi-

TABLE 2
Total Procedure Time and Dose of CT Fluoroscopy–guided Procedures, by
Means of the Quick-Check Method

Subject
No.

x Data: Log Time
(ln[min])

Ranks of
x Data

y Data: Log Dose
(ln[rad])

Ranks of
y Data

1 3.61 1 1.48 2
2 3.87 2 1.24 1
3 3.95 3 2.08 5.5
4 4.04 4 1.70 3
5 4.06 5 2.08 5.5
6 4.11 6 2.94 10
7 4.19 7 2.24 7
8 4.20 8 1.85 4
9 4.32 9.5 2.84 9

10 4.32 9.5 3.93 16
11 4.42 11.5 3.03 11
12 4.42 11.5 3.23 13
13 4.45 13 3.87 15
14 4.50 14 3.55 14
15 4.52 15 2.81 8
16 4.57 16 4.07 17
17 4.58 17 4.44 19
18 4.61 18 3.16 12
19 4.74 19 4.19 18

Source.—Reference 11.
Note.—Paired x and y data are sorted according to the x component; therefore, the log of the

total procedure time and the log of the corresponding rank have an increasing order. When ties are
present in the data, the average of their adjacent ranks is used. Pearson correlation coefficient
between log time and log dose, r % 0.85; Spearman ! % 0.84.

TABLE 3
Results based on Correlation and
Regression Analysis for Example
Data

Regression Statistic Numerical Result

Correlation coefficient r 0.85
R-square (R2) 0.73
Regression parameter

Intercept #9.28
Slope 2.83

Source.—Reference 11.

Figure 3. Scatterplot of the log of dose (y
axis) versus the log of total time (x axis). Each
point in the scatterplot represents the values of
two variables for a given observation.

Figure 4. Scatterplot of the log of dose (y
axis) versus the log of total time (x axis). The
regression line has the intercept a % #9.28 and
slope b % 2.83. We conclude that there is a
possible association between the radiation
dose and the total time of the procedure.

620 ! Radiology ! June 2003 Zou et al

R
a

d
io

lo
gy



tional sources of information and elec-
tronic textbooks on statistical analysis
methods found on the World Wide Web
are listed in Appendix E. A glossary of the
statistical terms used in this article is pre-
sented in Appendix F.

When correlation analysis is con-
ducted to measure the association be-
tween two random variables, either the
Pearson linear correlation coefficient or
the Spearman rank correlation coeffi-
cient ! may be adopted. The former coef-
ficient is used to measure the linear rela-
tionship but is not recommended for use
with skewed data or data with extremely
large or small values (often called the
outliers). In contrast, the latter coeffi-
cient is used to measures a general asso-
ciation, and it is recommended for use
with data that are skewed or that have
outliers.

When simple regression analysis is
conducted to assess the linear relation-
ship of a dependent variable as a func-
tion of the independent variable, caution
must be used when determining which
of the two variables is viewed as the in-
dependent variable that makes sense
clinically. A useful graphical aid is a scat-
terplot. Once the regression line is ob-
tained, caution should also be used to
avoid prediction of a y value for any
value of x that is outside the range of the
data. Finally, correlation and regression
analyses do not infer causality, and more
rigorous analyses are required if causal
inference is to be made (23–26).

APPENDIX A

Formula for computing the Pearson cor-
relation coefficient, r: The formula for com-
puting r between bivariate data, Xi and Yi

values (i % 1,. . .,n) is

r "

!
i%1

n

)Xi # X! *)Yi # Y!*

"!
i%1

n

)Xi # X! *2!
i%1

n

)Yi # Y!*2

,

where X and Y are the sample means of the
Xi and Yi values, respectively.

The Pearson correlation coefficient may
be computed by means of a computer-based
statistics program (Excel; Microsoft) by us-
ing the option “Correlation” under the op-
tion “Data Analysis Tools”. Alternatively, it
may also be computed by means of a
built-in software function “Cor” (Insightful;
MathSoft, Seattle, Wash [MathSoft S-Plus 4
guide to statistics, 1997; 89–96]. Available
at: www.insightful.com) or with a free soft-

ware program (R Software. Available at: lib
.stat.cmu.edu/R).

APPENDIX B

Total sample size based on the Pearson
correlation coefficient: Specify r % expected
correlation coefficient, C % 0.5 ( ln[(1 $
r)/(1 # r)], N % total number of subjects
required, + % type I error (ie, significance
level, typically fixed at 0.05), , % type II
error (ie, 1 minus statistical power, typically
fixed at 0.10). Then N % [(Z+ $ Z,)/C]2 $ 3,
where Z+ is the inverse of the cumulative
probability of a standard normal distribu-
tion with the tail probability of +. Similarly,
Z, is the inverse of the cumulative proba-
bility of a standard normal distribution
with the tail probability of ,. Consequently,
compute the smallest integer, n, such that
n ! N, as the required sample size.

For example, an investigator wishes to
conduct a clinical trial of a paired design
based on a one-tailed hypothesis test of the
correlation coefficient. The null hypothesis
is that the correlation between two vari-
ables is r % 0.60 (ie, C % 0.693) in the
population of interest. The alternative hy-
pothesis is that the correlation is r - 0.60.
Type I error is fixed to be 0.05 (ie, Z+ %
1.645), while type II error is fixed to be 0.10
(ie, Z, % 1.282). Thus, the required sample
size is N % 21 subjects. A sample size table
may also be found in reference 18.

APPENDIX C

Formula for computing Spearman ! and
Pearson rs: Replace bivariate data, Xi and Yi

(i % 1,. . .,n), by their respective ranks Ri %
rank(Xi) and Si % rank(Yi). Rank correlation
coefficient, rs, is defined as the Pearson cor-
relation coefficient between the Ri and Si

values, which can be computed by means of
the formula given in Appendix A. An alter-
native direct formula was given by Hett-
mansperger (19).

The Spearman ! may also be computed by
first reducing the continuous data to their
marginal ranks by using the “rank and per-
centile” option with Data Analysis Tools
(Excel; Microsoft) or the “rank” function
(Insightful; MathSoft) or the free software.
Both software programs correctly rank the
data in ascending order. However, the rank
and percentile option in Excel ranks the
data in descending order (the largest is 1).
Therefore, to compute the correct ranks,
one may first multiply all of the data by #1
and then apply the rank function. Excel
also gives integer ranks in the presence of
ties compared with the methods that yield
possible noninteger ranks, as described in
the standard statistics literature (19).

Subsequently, the sample correlation co-
efficient is computed on the basis of the

ranks of the two marginal data by using the
Correlation option in Data Analysis Tools
(Excel; Microsoft) or by using the Cor func-
tion (Insightful; MathSoft) or the free soft-
ware.

APPENDIX D

Simple regression analysis: Regression
analysis may be performed by using the
“Regression” option with Data Analysis
Tools (Excel; Microsoft). This regression
analysis tool yields the sample correlation
R2; estimates of the regression parameters,
along with their statistical significance on
the basis of the Student t test; residuals; and
standardized residuals. Scatter, line fit, and
residual plots may also be created. Alterna-
tively, the analyses can be performed by
using the function “lsfit” (Insightful; Math-
Soft) or the free software.

With either program, one may choose to
transform the data or exclude outliers be-
fore conducting a simple regression analy-
sis. A commonly used variance-stabilizing
transformation is the natural log function
(ln) applied to one or both variables. Other
transformation (eg, Box-Cox transforma-
tion) and weighting methods in regression
analysis may also be used (28,29).

APPENDIX E

Uniform resource locator, or URL, links to
electronic statistics textbooks: www.davidm
lane.com/hyperstat/index.html, www.statsoft
.com/textbook/stathome.html, www.ruf.rice.edu
/.lane/rvls.html, www.bmj.com/collections
/statsbk/index.shtml, espse.ed.psu.edu/statistics
/investigating.htm.

APPENDIX F

Glossary of statistical terms:
Bivariate data.—Measurements obtained

on more than one variable for the same unit
or subject.

Correlation coefficient.—A statistic be-
tween #1 and 1 that measures the associa-
tion between two variables.

Intercept.—The constant a in the regres-
sion equation, which is the value for y when
x % 0.

Least squares method.—The regression line
that is the best fit to the data for which the
sum of the squared residuals is minimized.

Outlier.—An extreme observation far
away from the bulk of the data, often
caused by faulty measuring equipment or
recording error.

Pearson correlation coefficient.—Sample
correlation coefficient for measuring the
linear relationship between two variables.

R2.—The square of the Pearson correla-
tion coefficient r, which is the fraction of
the variability in Y that can be explained by
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the variability in X through their linear re-
lationship or vice versa.

Rank.—The relative ordering of the mea-
surements in a variable, which can be non-
integer numbers in the presence of ties.

Residual.—The difference between the ob-
served values of the outcome variable and
the fitted values based on a linear regression
analysis.

Scatterplot.—A plot of the observed biva-
riate outcome variable (y axis) against its
predictor variable (x axis), with a dot for
each pair of bivariate observations.

Simple linear regression analysis.—A linear
regression analysis with one predictor and
one outcome variable.

Skewed data.—A distribution is skewed if
there are more extreme data on one side of
the mean. Otherwise, the distribution is
symmetric.

Slope.—The constant b in the regression
equation, which is the change in y that cor-
responds to a one-unit increase (or de-
crease) in x.

Spearman !.—A rank correlation coeffi-
cient for measuring the monotone relation-
ship between two variables.
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Fundamental Measures of
Diagnostic Examination
Performance: Usefulness for
Clinical Decision Making
and Research1

Measures of diagnostic accuracy, such as sensitivity, specificity, predictive values, and
receiver operating characteristic curves, can often seem like abstract mathematic con-
cepts that have a minimal relationship with clinical decision making or clinical research.
The purpose of this article is to provide definitions and examples of these concepts that
illustrate their usefulness in specific clinical decision-making tasks. In particular, nine
principles are provided to guide the use of these concepts in daily radiology practice, in
interpreting clinical literature, and in designing clinical research studies. An understand-
ing of these principles and of the measures of diagnostic accuracy to which they apply
is vital to the appropriate evaluation and use of diagnostic imaging examinations.
© RSNA, 2003

The bulk of the radiology literature concerns the assessment of examination performance,
which is sometimes referred to as diagnostic accuracy. Despite the proliferation of such
research on examination performance, it is still difficult to assess new imaging technolo-
gies, in part because such initial assessments are not always performed with an eye for how
the results will be used clinically (1). The goal of this article is to describe nine fundamental
principles (Appendix) to help answer specific clinical questions by using the radiology
literature.

Consider the following clinical scenario: A referring physician calls you about the
findings of a diagnostic mammogram that you interpreted yesterday. In the upper outer
quadrant of the left breast you identified a cluster of suspicious microcalcifications—not
the kind that suggests definite cancer but rather that which indicates the need for a more
definitive work-up. The referring physician relays to you the patient’s desire to explore the
possibility of breast magnetic resonance (MR) imaging.

In this article, I will use this clinical example to illustrate the basic concepts of exami-
nation performance. To supplement previously published introductory material (2–4), I
will relate the nine fundamental principles to the specific clinical scenario just described
to illustrate the strengths and weaknesses of using them for clinical decision making and
clinical research. I plan to answer the following questions in the course of this discussion:
Which descriptors of an examination are the best intrinsic measures of performance?
Which are the most clinically important? What are the limitations of sensitivity and
specificity in the assessment of diagnostic examinations? What are receiver operating
characteristic (ROC) curves, and why is their clinical usefulness limited? Why are predic-
tive values more clinically relevant, and what are the pitfalls associated with using them?
The ability of radiologists to understand the answers to these questions is critical to
improving the application of the radiology literature to clinical practice.

TWO-BY-TWO CONTINGENCY TABLE: A SIMPLE
AND UNIVERSAL TOOL

One of the most intuitive methods for the analysis of diagnostic examinations is the
two-by-two table. This simple device can be jotted on the back of an envelope yet is quite
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versatile and powerful, both in the anal-
ysis of a diagnostic examination and in
increasing our understanding of exami-
nation performance.

Simplifying Assumptions

The use of two-by-two tables (a more
general term is contingency tables) requires
certain simplifying assumptions and pre-
requisites. The first assumption that I will
make is that the examination in question
must be compared with a reference-stan-
dard examination—that is, one with re-
sults that yield the truth with regard to
the presence or absence of the disease. In
the past, this reference standard has com-
monly been called a “gold standard”—a
term that is falling out of favor, perhaps
because of the recognition that even
some of the best reference standards are
imperfect. For example, even clinical di-
agnoses supplemented by the results of
the most effective histopathologic analy-
ses are fallible (5).

A second major assumption that I will
make is that the examination result must
be considered either positive or negative.
This is perhaps the least appealing as-
sumption with regard to a two-by-two
table, because many examinations have
continuous result values, such as the de-
gree of stenosis in a vessel or the attenu-
ation of a liver lesion. As we will see later,
this is one of the first assumptions that I
will discard when advanced concepts
such as ROC curves are discussed (6–8).
The final assumption is that one assesses
examination performance with respect to
the presence or absence of a single dis-
ease and not several diseases.

Example Use of a Two-by-Two
Table

Table 1 is a prototypical form of a two-
by-two table. Across the top, we see two
center columns, one for all cases (or pa-
tients) in which the disease is truly
present (D") and the other for all cases in
which the disease is truly absent (D#). In
the far left column of the table, we see
the two possible examination results:
positive, indicating disease presence, and
negative, indicating disease absence. This
table summarizes the relationship be-
tween the examination result and the ref-
erence-standard examination and defines
four distinct table cells (ie, true-positive,
false-positive, true-negative, and false-
negative examination results). In the first
row (T"), we see that a positive examina-
tion result can be either true-positive or
false-positive, depending on whether the

disease is present or absent, respectively.
The second row (T#) shows that a nega-
tive examination result can be either
false-negative or true-negative, again de-
pending on whether the disease is present
or absent, respectively.

Data in the D" column show how the
examination performs (ie, yields results
that indicate the true presence or true
absence of a given disease) in patients
who have the disease in question. Data in
the D# column show how the examina-
tion performs in patients who do not
have the disease (ie, who are “healthy”
with respect to the disease in question).
The total numbers of patients who actu-
ally do and do not have the disease ac-
cording to the reference-standard exami-
nation results are listed at the bottom of
the D" and D# columns, respectively.

The datum in the first row at the far
right (TP " FP) is the total number of
patients who have positive examination
results; the datum in the second row at
the far right (FN " TN) is the total num-
ber of patients who have negative exam-
ination results. The overall total (N) is the
total number of patients who partici-
pated in the study of examination perfor-
mance.

The example data in Table 2 are in-
terim data from an experiment to evalu-
ate the accuracy of breast MR imaging in
patients with clinically or mammo-
graphically suspicious lesions. Like the
patient with suspicious microcalcifica-
tions who is considering undergoing MR
imaging in the hypothetical scenario de-
scribed earlier, all patients in this exper-
iment had suspicious lesions and were
about to undergo open excisional biopsy.
Prior to biopsy, each woman underwent
dynamic contrast material–enhanced MR
imaging of the breast. The results of his-
topathologic examination of the specimen
obtained at subsequent excisional biopsy
were used as the reference standard for dis-
ease. (A more detailed description of the
experimental methodology and a more re-
cent report of the data are published else-
where [9].) As shown in Table 2, a total of
182 women were enrolled in the study at
the time the table was constructed. Seven-
ty-four of these women had cancer, and
108 did not. There were a total of 99 posi-
tive examination results: 71 were true-pos-
itive and 28 false- positive. The 83 negative
examination results comprised three false-
negative and 80 true-negative results.

In the following sections, I describe the
important quantitative measures of ex-
amination performance that can be com-
puted from a two-by-two table.

SENSITIVITY AND SPECIFICITY:
INTRINSIC MEASURES OF
EXAMINATION PERFORMANCE

Sensitivity: Examination
Performance in Patients with
the Disease in Question

Principle 1: Sensitivity is a measure of
how a diagnostic examination performs
in a population of patients who have the
disease in question. The value can be de-
fined as how often the examination will
enable detection of the disease when it is
present: TP/(TP " FN).

Given the data in two-by-two Table 2,
sensitivity is computed by using the
numbers in the “Malignant” column. Of
the 74 women who actually had cancer,
71 had a positive MR imaging result.
Thus, the sensitivity of breast MR imag-
ing in the sample of women undergoing
breast biopsy was 96%—that is, 71 of 74
women with cancer were identified by
using MR imaging.

TABLE 1
Shorthand Two-by-Two Table
Describing Diagnostic Examination
Performance

Examination
Result D" D# Total

T" TP FP TP " FP
T# FN TN FN " TN
Total TP " FN FP " TN N

Note.—D" ! all cases or patients in which
disease is truly present (ie, according to refer-
ence-standard examination results), D# ! all
cases or patients in which disease is truly ab-
sent, FN ! number of cases or patients with
false-negative examination results, FP ! num-
ber of cases or patients with false-positive ex-
amination results, N ! overall total number of
cases or patients, T" ! positive examination
result, T# ! negative examination result,
TN ! number of cases or patients with true-
negative examination results, TP ! number of
cases or patients with true-positive examina-
tion results.

TABLE 2
Patient Data in Experiment to Study
Breast MR Imaging

MR Imaging
Result Malignant Benign Totals

Positive 71 28 99
Negative 3 80 83
Total 74 108 182

Note.—Data are numbers of women with
malignant or benign breast tumors.
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Specificity: Examination
Performance in Patients without
the Disease in Question

Principle 2: Specificity is a measure of
how a diagnostic examination performs
in a population of patients who do not
have the disease (ie, healthy subjects)—in
other words, a value of the ability of an
examination to yield an appropriately neg-
ative result in these patients. Specificity
can be defined as how often a healthy pa-
tient will have a normal examination re-
sult: TN/(FP " TN).

In the example scenario, specificity is
calculated by using the numbers in the
“Benign” column of two-by-two Table
2. Of the 108 women who had benign
lesions, 80 had negative MR imaging
results. Thus, the specificity of breast
MR imaging in the sample of women
undergoing breast biopsy was 74%—
that is, 80 of 108 women without can-
cer were identified by using MR imag-
ing.

Relative Importance of Sensitivity
and Specificity

How can sensitivity and specificity
values be used directly to determine
whether an examination might be use-
ful in a specific clinical situation?
Which value is more important? A
quantitative analysis of these questions
(4) is beyond the scope of this article.
However, here are two qualitative rules
of thumb, which together make up

principle 3: A sensitive examination is
more valuable in situations where false-
negative results are more undesirable
than false-positive results. A specific ex-
amination is more valuable in situa-
tions where false-positive results are
more undesirable than false-negative
results.

For example, with regard to a woman
with a suspicious breast mass, we must
consider how we would feel if we were to
miss a cancer owing to a false-negative
examination. Because we would regret
this outcome, we place appropriate em-
phasis on developing and enhancing the
sensitivity of breast MR imaging to avoid
missing cancers that may progress during
the follow-up interval after a false-nega-
tive MR imaging examination. We would
also feel uncomfortable about referring a
patient for excisional biopsy of a benign
lesion, but perhaps less so, since this re-
sult would occur even if MR imaging was
never performed. Consequently, this
principle leads us to the conclusion
that sensitivity is more important than
specificity with respect to breast MR im-
aging in this clinical setting. Because
the main potentially beneficial role of
breast MR imaging in this clinical set-
ting is to allow some women without
cancer to avoid excisional biopsy, this
principle also highlights the greater im-
portance of sensitivity compared with
specificity in this case. Pauker and Kas-
sirer (10) provide a quantitative discus-
sion of how this principle functions.

Limitations

Sensitivity and specificity are impor-
tant because they are diagnostic exami-
nation descriptors that do not vary
greatly among patient populations. A de-
tailed analysis of the limitations of these
measures is described elsewhere (11). Let
us return to the woman with a suspicious
lesion on the mammogram. She wants to
know whether breast MR imaging might
help her. Now that we have computed
the sensitivity and specificity of MR im-
aging by using the data in the two-by-
two table, we can convey to her the fol-
lowing: “If you have cancer, the chance
that your MR imaging examination will
be positive is 96%. If you don’t have can-
cer, the chance that your MR imaging
examination will be negative is 74%.”
Statements of this kind are often difficult
for patients and health care providers to
incorporate into their clinical reasoning.
Thus, a key weakness of sensitivity and
specificity values is that they do not yield
information about a diagnostic examina-
tion in a form that is immediately rele-
vant to a specific clinical decision-mak-
ing task. Therefore, while the diagnostic
imaging literature may contain a great
deal of information about the measured
sensitivity and specificity of a given ex-
amination, it often contains few data
that help us assess the optimal clinical
role of the examination (12).

Principle 4: The sensitivity and speci-
ficity of a diagnostic examination are re-
lated to one another. An additional im-
portant weakness of sensitivity and
specificity is that these two measures can-
not always be used to rank the accuracy
of two examinations (or two radiolo-
gists). This weakness is particularly evi-
dent when one examination has a higher
sensitivity but a lower specificity than
another. The reason that examination
comparison difficulties often arise with
regard to sensitivity and specificity is that
these two values are inherently related:
You cannot evaluate one without the
other. As sensitivity increases, specificity
tends to decrease, and vice versa. We see
this phenomenon every day when two
colleagues interpret the same images dif-
ferently.

Consider, for example, how two radi-
ologists decide whether congestive heart
failure is depicted on a chest radiograph.
One reader may use strict criteria for the
presence of congestive heart failure and
thus interpret fewer findings as positive,
facilitating decreased sensitivity and in-
creased specificity. The other reader may
use much more flexible criteria and thus

Figure 1. Six-category scale for rating the presence or absence of breast cancer. By varying a
cutoff for rating categories, one can create five two-by-two tables of data from which sensitivity
and specificity values can be calculated (sensitivity and specificity #1–#5).
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interpret more image findings as positive
for congestive heart failure, facilitating
increased sensitivity but decreased speci-
ficity.

ROC CURVES

Comprehensive Comparisons
among Diagnostic Examinations

Principle 5: ROC curves provide a
method to compare diagnostic examina-
tion accuracy independently of the diag-
nostic criteria (ie, strict or flexible) used.
When one examination is more sensitive
but another is more specific, how do we
decide which examination provides bet-
ter diagnostic information? Or, are the
accuracies of the two examinations really
similar, with the exception that one in-
volves the use of stricter criteria for a
positive result? ROC curves are important
and useful because they can answer these
questions by explicitly representing the
inherent relationship between the sensi-
tivity and specificity of an examination.
As such, ROC curves are designed to il-
lustrate the overall information yielded
by an imaging examination, regardless of
the criteria a reader uses to interpret the
images. Therefore, ROC curves specifi-
cally address situations in which exami-
nations cannot be compared on the basis
of sensitivity and specificity alone. A de-
tailed discussion of ROC methodology is
published elsewhere (7).

For the discussion of ROC curves, I will
“relax” one of the assumptions made ear-
lier—that of a two-value (ie, positive or
negative) examination result. Instead,
the readers of the images generated in the
two examinations will be allowed to
specify their results on a scale. Figure 1 is
an illustration of a six-point rating scale
for imaging-based identification of breast
cancer. When using this scale, the reader
of breast images is asked to specify the
interpretation in terms of one of six find-
ing categories: definitely cancer, proba-
bly cancer, possibly cancer, possibly be-
nign, probably benign, or definitely
benign. One then tabulates the ratings by
using the two-by-six table shown in Fig-
ure 2.

The rating scale and the table pro-
duced by using it provide multiple op-
portunities to measure sensitivity and
specificity. For example, we can assume
that the examination is positive only
when “definitely cancer” is selected and
is negative otherwise. Next, we can as-
sume that the probably cancer and defi-
nitely cancer ratings both represent pos-
itive examination results and that the

remaining ratings represent negative re-
sults. When the two-by-six table is col-
lapsed in this manner, a new two-by-two
table is formed comprising higher sensi-
tivity and lower specificity values than
the first two-by-two table (because less
strict imaging criteria were used and
more image findings were rated as posi-
tive).

We can repeat this process five times,
concluding with a two-by-two table such
as that shown in Figure 2 (bottom table),
in which only the definitely benign rat-
ings are considered to represent negative
results and the remaining ratings are con-
sidered to represent positive results. This
approach would result in low specificity
and high sensitivity. Figure 3 shows a
plot of all five sensitivity-specificity pairs
that can be derived from the two-by-six
table data in Figure 2 and the ROC curve
defined by these points.

Clinical Limitations

Several methods to quantitatively as-
sess an examination on the basis of the
ROC curve that it yields have been de-
signed. The most popular method is to
measure the area under the ROC curve,
or the Az. In general, the larger the area
under the ROC curve, the better the di-
agnostic examination. Despite the ad-
vantages of these measurements of area
under the ROC curve for research and
analysis, they do not provide informa-
tion that is useful to the clinician or pa-
tient in clinical decision making. Thus,

the value of the area under the ROC
curve has no intrinsic clinical meaning.
Also, there is no cutoff above or below
which one can be certain of the useful-
ness a diagnostic examination.

Should a patient with an abnormal
mammogram be satisfied if she is told
that the area under the ROC curve for
breast MR imaging is 0.83? Although the
area under the ROC curve is helpful for
comparing two examinations, it has lim-
ited usefulness in facilitating the clinical
decisions of patients and referring physi-
cians.

Figure 2. Sample two-by-six table showing the results of an ROC study of breast cancer iden-
tification in 200 patients. The two-by-two table at the bottom can be created by setting a cutoff
between the ratings of definitely benign and probably benign. This cutoff corresponds to sensi-
tivity #1 and specificity #1 in Figure 1. Sensitivity and specificity values are calculated by using the
two-by-two table data. As expected, use of the more flexible criteria leads to high sensitivity but
low specificity.

Figure 3. Sample ROC curve. This curve is a
plot of sensitivity versus (1 # specificity). The
0,0 point and 1,1 point are included by default
to represent the situation in which all images
are considered to be either negative or positive,
respectively. FPF ! false-positive fraction,
TPF ! true-positive fraction.
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PREDICTIVE VALUES

Measuring Postexamination
Likelihood of Disease

Because sensitivity, specificity, and
ROC curves provide an incomplete pic-
ture of the clinical usefulness of an imag-
ing examination, I will now shift back to
the original two-by-two table for breast
MR imaging (Table 2) to examine two
additional measurements that have much
greater clinical relevance and intuitive ap-
peal: positive and negative predictive val-
ues. These quantities emphasize an impor-
tant principle of diagnostic examinations—
principle 6: A diagnostic examination causes
a change in our belief about the likelihood
that disease is truly present.

For example, the data in two-by-two
Table 2 indicate that the probability of
cancer in the women with suspicious
mammograms was 41% (74 of 182
women). Thus, simply on the basis of her
referral for excisional biopsy (without
knowing the specific mammographic ap-
pearance of the lesion), the chance of
cancer in the woman in the hypothetical
scenario is about 41%. How can MR im-
aging help modify this likelihood to ben-
efit the patient? The predictive values can
help answer this question.

Principle 7: The positive predictive
value indicates the likelihood of disease
given a positive examination. Positive
predictive value is defined as the proba-
bility of disease in a patient whose exam-
ination result is abnormal: TP/(TP " FP).
Thus, we can compute the positive pre-

dictive value by using only the numbers
in the first row (“Positive”) of two-by-two
Table 2. A total of 99 patients had posi-
tive MR imaging results. Seventy-one of
these patients actually had cancer. Thus,
the positive predictive value of breast MR
imaging is 72%—in other words, 71 of
the 99 women with positive MR imaging
results had cancer. These values are
sometimes referred to as “posttest likeli-
hoods” or “posttest probabilities of dis-
ease,” because the predictive value sim-
ply reflects the probability of disease after
the examination result is known. The
positive predictive value tells us, as ex-
pected, that a positive breast MR imaging
result increases the probability of disease
from 41% to 72%.

Principle 8: The negative predictive
value indicates the likelihood of no dis-
ease given a negative examination. The
negative predictive value is the negative
analog of the positive predictive value.
The negative predictive value can be de-
fined as the probability that disease is
absent in a patient whose examination
result is negative: TN/(FN " TN). Thus,
the negative predictive value can be com-
puted solely by using the values in the
second row (“Negative”) of two-by-two
Table 2. A total of 83 patients in the sam-
ple had negative MR imaging results.
Eighty of these patients actually had be-
nign lesions; there were three false-nega-
tive results. Thus, the negative predictive
value of breast MR imaging was 96%—in
other words, 80 of the 83 women with
negative MR imaging results did not have

cancer. (Note: It is coincidence that the
sensitivity and negative predictive value
are approximately equivalent in this
case.) The probability of disease after a
negative examination is simply 100% mi-
nus the negative predictive value, or 4%
in this case. This computation tells
us—as expected—that a negative exami-
nation decreases the probability of dis-
ease in this case from 41% to 4%.

The clinical usefulness of the predic-
tive values is best illustrated by the first
question that the patient in our hypo-
thetical scenario might ask after she has
undergone MR imaging: “Do I have can-
cer?,” which in the uncertain world of
medicine, can be translated as “How
likely is it that I have cancer?” The pre-
dictive values, in contrast to sensitivity
and specificity, answer this question and
therefore are helpful in the clinical deci-
sion-making process. Knowing that a
negative MR imaging result decreases the
chance of cancer to 4% raises several ad-
ditional questions for the clinician and
patient to consider: Is a 4% likelihood
low enough that excisional biopsy could
be deferred during a short period of fol-
low-up? Is it worth it to trade the poten-
tial harm of tumor progression during
short-interval follow-up for the potential
benefit of not undergoing excisional bi-
opsy? These trade-offs can be considered
explicitly by using decision analysis (13)
but are routinely considered implicitly by
referring physicians, patients, and other
medical decision makers.

Limitations

Although predictive values have sub-
stantial clinical usefulness, a discussion
of their weaknesses is warranted. The
most important weakness is the depen-
dence of predictive values on the preex-
amination probability, or the prevalence
of disease in the imaged population. As
emphasized earlier, a diagnostic exami-
nation causes a change in our belief
about the likelihood of disease. And, as
expected, the higher the preexamination
probability of disease, the higher the pos-
texamination probability of disease.
Thus, predictive values are directly de-
pendent on the population in which the
given examination is performed.

Consider the following example, which
illustrates this dependence: Since breast
MR imaging may depict some cancers that
were missed with mammography, why not
use MR imaging as a screening tool to de-
tect cancer in low-risk asymptomatic
women? This approach has some intuitive
appeal since breast MR imaging is a highly

Figure 4. Flowchart depicts a simulated population of 20,050 low-risk asymptomatic women
who might be screened with breast MR imaging. The assumed prevalence of cancer in this
screening population of 50 women with and 20,000 women without cancer is 0.25%. MRI" and
MRI# ! positive and negative MR imaging results, respectively.
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sensitive examination and might depict a
greater number of cancers than would be
detected with screening mammography.
To illustrate the implications of this ap-
proach, a simulation of what would occur
if a group of low-risk asymptomatic women
were screened with MR imaging is pro-
vided (Fig 4). To approximate the preva-
lence of cancer in a low-risk screening pop-
ulation and to simplify the calculations, I
will use 0.25% as the prevalence of breast
cancer. For simplicity, I will consider a
screening population of 20,050 women, 50
of whom have occult cancer.

Since we have established that MR im-
aging is 96% sensitive, 48 of the 50
women who actually have cancer will
have positive MR imaging examinations
(50 $ .96 ! 48). The other two women
will have false-negative MR imaging ex-
aminations and undetected cancer, just
as if they had never undergone screening
MR imaging. With the 74% specificity for
breast MR imaging computed earlier,
14,800 women will have normal MR im-
aging examinations (20,000 $ .74 !
14,800). The remaining 5,200 women
will have false-positive examinations. Ta-
ble 3 is a two-by-two table containing
these data.

Because the true disease status of these
women will be unknown at the time of
examination, clinical inferences must be
drawn from the examination results and
predictive values. According to principle
8, the negative predictive value indicates
the clinical implications of a negative ex-
amination. Since there are 14,802 women
with negative examinations, only two of
whom have cancer, the negative predictive
value is 0.01% (two of 14,802 women).
This value represents a decrease from
0.25% and has no real clinical importance
in a screening population; however, it does
have some potential reassurance value.

There are 5,248 women with positive
examinations in the simulation, and 48
of them actually have cancer, so the like-
lihood of cancer is approximately 1.00%
(48 of 5,248 women). Thus, a positive MR
imaging examination increases the likeli-
hood of cancer from 0.25% to 1.00%.
This group of women represents a clinical
problem, however: Are we willing to per-
form 100 biopsies to find one cancer?
Probably not. Should these women be
followed up with a special more intensive
regimen? Perhaps, but there are lingering
questions regarding the cost-effective-
ness of this program, which would likely
cost tens of millions of dollars and lead to
a substantial increase in the number of
negative excisional biopsies.

This example of screening MR imaging

illustrates clearly that the predictive val-
ues for breast MR imaging are vastly dif-
ferent in a screening population with a
much smaller prevalence of disease. Like-
wise, the values of clinical usefulness of
breast MR imaging as a screening exami-
nation are in stark contrast to the analo-
gous measures of MR imaging performed
in women with mammographically sus-
picious lesions. This contrast illustrates a
weakness of predictive values: They vary
according to the population in which the
given examination is performed. Al-
though the predictive values for breast
MR imaging performed in women with
suspicious mammograms are appealing,
the predictive values for this examina-
tion performed in a screening population
suggest that it has little value for asymp-
tomatic women with low breast cancer
risk. Another realistic clinical example of
this phenomenon is described elsewhere
(14).

Despite these limitations, predictive
values can be determined mathemati-
cally from sensitivity, specificity, and
prevalence data. Because sensitivity and
specificity values are often published, a
clinician can compute the predictive val-
ues for a particular population of interest
by using the prevalence of disease in that
population and the sensitivity and spec-
ificity values provided in the literature.

LIKELIHOOD RATIO

Quantifying Changes in Disease
Likelihood

Principle 9: Likelihood ratios enable
calculation of the postexamination prob-
ability of disease from the preexamina-
tion probability of disease. A brief de-
scription of the likelihood ratio (15,16) is
relevant here because this measurement
is not affected by disease prevalence and
can yield clinically useful information.
Likelihood ratio is defined as the proba-
bility that a person with a disease will
have a particular examination result di-
vided by the probability that a person
with no disease will have that same re-
sult. Positive likelihood ratio (LR"),
sometimes expressed as %, is defined as
the likelihood, or probability, that a per-
son with a disease will have a positive
examination divided by the likelihood
that a person with no disease will have a
positive examination: LR" ! sensitivity/
(1 # specificity). Negative likelihood ra-
tio (LR#) is defined as the probability
that a person with a disease will have a
negative examination divided by the
probability that a person without the dis-

ease will have a negative examination:
LR# ! (1 # sensitivity)/specificity.

To illustrate the use of likelihood ra-
tios, consider the breast MR imaging ex-
ample: The sensitivity of breast MR im-
aging is 96%, and the specificity is 74%.
Therefore, the positive likelihood ratio is
calculated by dividing the sensitivity by
(1 # specificity). Thus, LR" ! 0.96/(1 #
0.74) ! 3.7. The negative likelihood ratio
is calculated by dividing (1 # sensitivity)
by the specificity. Thus, LR# ! (1 #
0.96)/0.74 ! 0.055.

Once the likelihood ratios have been
calculated, they can be used to calculate
the postexamination probability of dis-
ease given the preexamination proba-
bility of disease, or P(D"!T"). For this
calculation, one first must convert
probabilities of disease to odds of dis-
ease. Odds of disease, Odds(D"), is de-
fined as the probability that disease is
present, p(D"), divided by the probabil-
ity that disease is absent, p(D#):
Odds(D") ! p(D")/p(D#).

To compute the postexamination
probability of disease given a positive ex-
amination result for any preexamination
probability value and examination result,
multiply the preexamination odds of dis-
ease, Odds(D"), by the positive likeli-
hood ratio for the examination result,
LR", to obtain the postexamination
odds, Odds(D"!T"). In other words, the
postexamination odds of having a given
disease given a positive examination re-
sult is equal to the positive likelihood
ratio multiplied by the preexamination
odds of the disease: Odds(D"!T") !
LR" ! Odds(D").

Finally, to determine the postexamina-
tion probability of disease, P(D"!T"),
convert the postexamination odds back
to a postexamination probability value.
The postexamination probability of dis-
ease given the examination result can be
computed from the postexamination
odds as follows:

TABLE 3
Patient Data in a Hypothetical Group
of Women Undergoing Screening
Breast MR Imaging

MR Imaging
Result Malignant Benign Total

Positive 48 5,200 5,248
Negative 2 14,800 14,802
Total 50 20,000 20,050

Note.—Data are numbers of women with
malignant or benign breast tumors.
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P(D"!T") !
Odds&D"!T")

1"Odds(D"!T")

With these three formulas, the likeli-
hood ratio can be used to determine the
postexamination probability of disease
(or predictive value) from any preexami-
nation probability of disease.

Limitations of the Likelihood Ratio

The likelihood ratio has several prop-
erties that limit its usefulness in describ-
ing diagnostic examinations. First, it
functions only on the basis of the odds of
disease rather than the more intuitive
probability of disease. Accordingly, the
likelihood ratio is best considered on a
logarithmic scale: Likelihood ratios of
less than 1.0 indicate that the examina-
tion result will decrease disease likeli-
hood, and ratios of greater than 1.0 indi-
cate that the examination result will
increase disease likelihood. To many, it is
not obvious that a likelihood ratio of 4.0
increases the likelihood of disease to the
same degree that a likelihood ratio of
0.25 decreases the likelihood. Further-
more, it is sometimes counterintuitive
that the same likelihood ratio causes dif-
ferent absolute changes in probability,
depending on the preexamination prob-
ability. Despite these weaknesses, the
likelihood ratio is probably underused in
the radiology literature today as a mea-
sure of examination performance.

CONCLUSION

In this article, I describe nine principles
(Appendix) that guide the evaluation and
use of diagnostic imaging examinations
in clinical practice. These principles are
helpful when choosing measures to de-
scribe the capabilities of a diagnostic ex-
amination. As I have discussed, sensitiv-
ity and specificity are relatively invariant
descriptors of examination accuracy.
However, they have limited clinical use-
fulness and often cannot be used directly
to compare two diagnostic examinations.
ROC curves can be used to directly
compare examinations independently of
reader temperament or varying image in-
terpretation criteria, but they yield little
information that is useful to the clinical
decision maker. Positive and negative

predictive values yield useful informa-
tion for clinical decision makers by facil-
itating explicit consideration of the
trade-offs at hand, but they are intrinsi-
cally dependent on the preexamination
likelihood of disease and therefore on the
population of patients in whom the
given examination is performed. Finally,
the likelihood ratio can be used to calcu-
late the postexamination likelihood of
disease from the preexamination likeli-
hood of disease, but the associated use of
odds and the logarithmic scale are coun-
terintuitive for some. An understanding
of the described fundamental measures
of examination performance and how
they are clinically useful is vital to the
appropriate evaluation and use of diag-
nostic imaging examinations.

APPENDIX

Nine principles that are helpful when
choosing measures to describe the capabili-
ties of a diagnostic examination:

1. Sensitivity is a measure of how a diag-
nostic examination performs in a popula-
tion of patients who have the disease in
question.

2. Specificity is a measure of how a diag-
nostic examination performs in a popula-
tion of patients who do not have the disease
in question (ie, healthy subjects).

3. A sensitive examination is more valu-
able in situations where false-negative re-
sults are more undesirable than false-posi-
tive results. A specific examination is more
valuable in situations where false-positive
results are more undesirable than false-neg-
ative results.

4. The sensitivity and specificity of a di-
agnostic examination are related to one an-
other.

5. ROC curves provide a method to com-
pare diagnostic examination accuracy inde-
pendently of the diagnostic criteria (ie,
strict or flexible) used.

6. A diagnostic examination causes a
change in our belief about the likelihood
that disease is truly present.

7. The positive predictive value indicates
the likelihood of disease given a positive
examination.

8. The negative predictive value indicates
the likelihood of no disease given a negative
examination.

9. Likelihood ratios enable calculation of
the postexamination probability of disease

from the preexamination probability of dis-
ease.
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Measurement of Observer
Agreement1

Statistical measures are described that are used in diagnostic imaging for expressing
observer agreement in regard to categorical data. The measures are used to characterize
the reliability of imaging methods and the reproducibility of disease classifications and,
occasionally with great care, as the surrogate for accuracy. The review concentrates on
the chance-corrected indices, ! and weighted !. Examples from the imaging literature
illustrate the method of calculation and the effects of both disease prevalence and the
number of rating categories. Other measures of agreement that are used less frequently,
including multiple-rater !, are referenced and described briefly.
© RSNA, 2003

The statistical analysis of observer agreement in imaging is generally performed for three
reasons. First, observer agreement provides information about the reliability of imaging
diagnosis. A reliable method should produce good agreement when used by knowledge-
able observers. Second, observer agreement can be used to check the consistency of a
method for classification of an abnormality that indicates the extent or severity of disease
(1) and to determine the reliability of various signs of disease (2). It can also be used to
compare the performance of humans and computers (3). Third, observer agreement can
provide a general estimate of the value of an imaging technique when an independent
method of proving the diagnosis precludes the measurement of sensitivity and specificity
or the more general receiver operating characteristic curve. In many clinical situations,
imaging provides the best evidence of abnormality. Furthermore, even if an independent
method for obtaining proof exists, it may be difficult to use. For every suspected lesion, a
biopsy cannot be performed to obtain a specific tissue diagnosis. As we will demonstrate,
currently popular measures of agreement do not necessarily reflect accuracy. However,
there are statistical techniques for use of the agreement of multiple expert readers (4) or the
agreement of multiple tests (5) to estimate the underlying accuracy of the test.

We illustrate the standard methods for description of agreement in regard to categorical
data and point out the advantages and disadvantages of the use of these methods. We refer
to some of the less common, although not less important, methods but do not describe
them. Then we describe some current developments in methods for use of agreement to
estimate accuracy. The discussion is limited to data that can be assigned to categories, such
as positive or negative; high, medium, or low; class I–V. Data, such as lesion volume or
heart size, that are collected on a continuous scale are more appropriately analyzed with
methods of correlation.

MEASUREMENT OF AGREEMENT OF TWO READERS

Consider readings of the same 150 images that are reported as either positive or negative
by two readers. The results are shown in Table 1 as joint agreement in a 2 " 2 format, with
the responses of each reader as marginal totals. Three general indices of agreement can be
derived from Table 1. The overall proportion of agreement, which we will call po, is
calculated as follows:

po !
7 " 121

150 ! 0.85.

The proportion is useful for calculations, but the result is usually expressed as a per-
centage. A po of 0.85 indicates that the two readers agree in regard to 85% of their
interpretations. If the number of negative readings is large relative to the number of
positive readings, the agreement in regard to negative readings will dominate the value of

Statistical Concepts Series

303

R
a

d
io

lo
gy



po and may give a false impression of
performance. For example, suppose that
90% of the cases are actually negative,
and two readers agree about all of the
negative interpretations but disagree
about the positive interpretations. The
overall agreement will be at least 90%
and may be greater depending on the
number of positive interpretations on
which they agree. As an alternative to the
overall agreement, the positive and neg-
ative agreement can be estimated sepa-
rately. This will give an indication of the
type of decision on which readers dis-
agree. The positive agreement, which we
will call ppos, is the number of positive
readings that both readers agree on di-
vided by all of the positive readings for
both readers. For the data in Table 1, the
positive agreement is calculated with the
following equation:

ppos !
7 " 7

#10 " 7$ " #12 " 7$
! 0.39.

The negative agreement, which we will
call pneg, can be calculated in a similar
way as follows:

pneg !
121 " 121

#10 " 121$ " #12 " 121$
! 0.92.

In the example given in Table 1, al-
though the two readers agree 85% of the
time overall, they only agree on positive
interpretations 39% of the time, whereas
they agree on negative interpretations
92% of the time. The advantage of calcu-
lation of ppos and pneg is that any imbal-
ance in the proportion of positive and
negative responses becomes apparent, as
in the example. The disadvantage is that
CIs cannot be calculated.

COHEN !

Some of the observer agreement concern-
ing findings of imaging tests can be
caused by chance. For example, chance
agreement occurs when the readers know
in advance that most of the cases are
negative and they adopt a reading strat-
egy of reporting a case as negative when-
ever they are in doubt. Both will have a
large percentage of negative agreements
because of prior knowledge of the preva-
lence of negative cases, not because of
information obtained from viewing of
the images. An index called ! has been
developed as a measure of agreement
that is corrected for chance. The ! is cal-
culated by subtracting the proportion of
the readings that are expected to agree by
chance, which we will call pe, from the
overall agreement, po, and dividing the

remainder by the number of cases on
which agreement is not expected to oc-
cur by chance. This is demonstrated in
Equation (1) as follows:

! !
po # pe

1 # pe
. (1)

Another way to view ! is that if the
readers read different images and the
readings were paired, some agreement,
namely po, would be observed. The ob-
served agreement would occur purely by
chance. The agreement that is expected
to occur by chance, which we shall des-
ignate pe, can be calculated. When the
readings of different images are com-
pared, the observed value, namely the po,
should equal the expected value, pe, be-
cause there is no agreement beyond
chance and ! is zero.

The joint agreement that is expected
because of chance is calculated for each
combination with multiplication of the
total responses of each reader contained
in the marginal totals of the data table.
From Table 1, the agreement expected by
chance for the joint positive and joint
negative responses is calculated with the
following equation:

pe ! ! 17
150 !

19
150"" !133

150 !
131
150"! 0.79.

The value for ! is 0.31, as is calculated
with this equation:

! !
0.85 # 0.79

1 # 0.79 ! 0.31.

The standard error, which we will call
SE, of ! for a 2 " 2 table can be estimated
with the following equation:

SE ! #po#1 # po$

n#1 # pe$
2 ,

SE#!$ ! #0.85#1 # 0.85$

150#1 # 0.79$2 ! 0.14. (2)

A more accurate and more complicated
equation for the standard error of ! can
be found in most books about statistics
(6,7).

The 95% CIs of ! can be calculated as
follows:

CI95% ! ! $ 1.96 ! SE#!$. (3)

For example, the 95% CIs are 0.31 %
1.96 " 0.14 & 0.04 and 0.31 ' 1.96 "
0.14 & 0.58.

Thus, what is the meaning of a ! of 0.31,
together with an overall agreement of
0.85? The calculated value of ! can range
from %1.00 to '1.00, but for practical
purposes the range from zero to '1.00 is
of interest. A ! of zero means that there is
no agreement beyond chance, and a ! of

TABLE 1
Joint Judgment of Two Readers
about Same 150 Images

First Reader

Second Reader

Total
Positive

for Disease
Negative

for Disease

Positive for
disease 7 10 17

Negative for
disease 12 121 133

Total 19 131 150

TABLE 2
Guidelines for Strength of
Agreement Indicated with ! Values

! Value
Strength of Agreement

beyond Chance

(0 Poor
0–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

Note.—Data are from Landis and Koch (8).

TABLE 3
Joint Judgment of Two Readers
about Position of Tubes and
Catheters on 100 Portable
Chest Images

First Reader

Second Reader

Total
Mal-

positioned
Correctly
Positioned

Malpositioned 3 3 6
Correctly

positioned 2 92 94

Total 5 95 100

TABLE 4
Joint Judgment of Two Readers
about Presence of Signs of
Congestive Heart Failure on 100
Portable Chest Images

First Reader

Second Reader

TotalCHF No CHF

CHF 20 12 32
No CHF 8 60 68

Total 28 72 100

Note.—CHF & congestive heart failure.
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1.00 means that there is perfect agreement.
Interpretations of intermediate values are
subjective. Table 2 shows the strength of
agreement beyond chance for various
ranges of ! that were suggested by Landis
and Koch (8). The choice of intervals is en-
tirely arbitrary but has become ingrained
with frequent usage. The values calculated
from Table 1 show that there is good
overall agreement (po & 0.85) but only
fair chance-corrected agreement (! &
0.31). This paradoxical result is caused by
the high prevalence of negative cases.
Prevalence effects can lead to situations
in which the values of ! do not corre-
spond with intuition (9,10). This is illus-
trated with the data in Tables 3 and 4
that were extrapolated, with a bit of ad-
justment to make the numbers come out
even, from a data set collected during a
study of readings in regard to portable
chest images obtained in a medical inten-
sive care unit (11). Table 3 shows the
agreement of the reports of two of the
readers concerning the position of tubes
and catheters. An incorrectly positioned
tube or catheter was defined as a positive
reading. Table 4 shows the agreement in
regard to the reports of the same two read-
ers about the presence of radiographic
signs of congestive heart failure. The ex-
ample was chosen because the actual val-
ues of ! for the two diagnoses were very
close.

The agreement indices for the two
types of readings are shown in Table 5.

The overall agreement (95%) for the po-
sition of tubes and catheters is very high,
but so is the agreement according to
chance (90%) calculated from the mar-
ginal values in Table 3. This results in a
low ! of 0.52, which happens to be the
same ! as that for congestive heart fail-
ure. The result is not intuitively appeal-
ing, because a relatively simple decision
such as that about the location of a cath-
eter tip should have a higher index of
agreement than a more difficult decision
such as that concerning a diagnosis of
congestive heart failure. Feinstein and
Cicchetti (9) have pointed out the para-
dox of high overall agreement and low !,
and Cicchetti and Feinstein (10) suggest
that when investigators report the results
of studies of agreement they should in-
clude the three indices of !, positive agree-
ment, and negative agreement. We agree
that this is a useful way of showing agree-
ment data, because it provides more de-
tails about where disagreements occur and
alerts the reader to the possibility of effects
caused by prevalence or prior knowledge.

WEIGHTED ! FOR MULTIPLE
CATEGORIES

The ! can be calculated for two readers who
report results with multiple categories. As
the number of categories increases, the
value of ! decreases because there is more
room for disagreement with more catego-

ries. However, when findings are reported
by using a ranked variable, the relative im-
portance of disagreement between cate-
gories may not be the same for adjacent
categories as it is for distant categories.
Two readers who consistently disagree
about minimal and moderate categories
would have the same value for ! calcu-
lated in the usual way as would two read-
ers who consistently disagree about min-
imal and severe categories. A method for
calculation of ! has been developed that
allows for differences in the importance
of disagreements. The usual approach
is to assign weights between 1.00 and
zero to each agreement pair, where 1.00
represents perfect agreement and zero
represents no agreement. Assignment of
weights can be very subjective and can
confuse comparison of ! values between
studies in which different weights were
used. For theoretical reasons, Fleiss (7)
suggests assignment of weights as fol-
lows:

wij ! 1 #
#i # j$2

#k # 1$2 , (4)

where w represents weight, i is the num-
ber of the row, j is the number of the col-
umn, and k is the total number of catego-
ries. The weighting is called quadratic
because of the squared terms. An example
of the method for calculation of weighted
! by using four categories is presented in
the Appendix. In the example in the Ap-
pendix, the categories of absent, mini-
mal, moderate, and severe are used. The
weighted and unweighted values for po

and ! are included in Table 6. The calcu-
lations were repeated by collapsing the
data for four categories first into three
and then into two categories: First, min-
imal and moderate categories were com-
bined, and then minimal, moderate, and
severe categories were combined, and
these two combinations would be equiv-
alent to normal and abnormal categories,
respectively. Table 6 shows that the value
of ! increases as the number of categories
is decreased, thus indicating better agree-
ment when the fine distinctions are elim-
inated. The weighted ! is greater than the
unweighted ! when multiple categories are
used and is the same as the unweighted !
when only two categories are used. Some
investigators prefer to use multiple catego-
ries because they are a better reflection of
actual clinical decisions, and if sensible
weighting can be achieved, the weighted !
may reflect the actual agreement better
than does the unweighted !.

TABLE 5
Indices of Agreement for Readings of Two Radiologists Regarding Portable
Chest Images for Position of Tubes and Catheters and Signs
of Congestive Heart Failure

Agreement
Index

Type of
Agreement

Tubes and
Catheters

Congestive
Heart Failure

po Overall 0.95 0.80
ppos Positive 0.54 0.67
pneg Negative 0.97 0.86
pe Chance 0.90 0.57
! Chance corrected 0.52 0.52

TABLE 6
Comparison of Unweighted and Weighted po and ! Calculated by Using Four-,
Three-, and Two-Response Categories

Categories

Unweighted Quadratic Weighting

po ! po(w) %(w)

Four-response 0.55 0.37 0.93 0.76
Three-response 0.66 0.48 0.92 0.71
Two-response 0.82 0.62 0.82 0.62

Note.—Values were calculated for data from Table A1.

Volume 228 ! Number 2 Measurement of Observer Agreement ! 305

R
a

d
io

lo
gy



ESTIMATION OF ! FOR
MULTIPLE READERS

When multiple readers are used, some
authors calculate the values of ! for pairs
of readers and then compute an average !
for all possible pairs (12–14). Fleiss (7)
describes a method for calculation of a !
index for multiple readers. It has not been
used very much in diagnostic imaging, al-
though it has been reported in some
studies along with values for weighted !
(15).

ADVANTAGES AND
DISADVANTAGES
OF THE ! INDEX

! has the advantage that it is corrected
for agreement with statistical chance,
and there is an accepted method for com-
puting confidence limits and for statisti-
cal testing. The main disadvantage of ! is
that the scale is not free of dependence
on disease prevalence or the number of
rating categories. As a consequence, it is
difficult to interpret the meaning of any
absolute value of !, although it is still
useful in experiments in which a control
for prevalence and for the number of cat-
egories is used. The prevalence bias makes
it difficult to compare the results of clinical
studies where disease prevalence may
vary; for example, this may occur in stud-
ies about the screening and diagnosis of
breast cancer. The disease prevalence
should always be reported when ! is used
to prevent misunderstanding when one
is trying to make generalizations.

RELATIONSHIP BETWEEN
AGREEMENT AND ACCURACY

High accuracy implies high agreement, but
high agreement does not necessarily imply
high accuracy. There is no direct way to
infer the accuracy in regard to an image-
reading task from reader agreement. Ac-
curacy can only be implied from agree-
ment, with the assumption that when
readers agree they must be correct. We
frequently make this assumption by seek-
ing a consensus diagnosis or by obtaining
a second opinion, but it is not always
correct. The ! has been shown to be in-
consistent with accuracy as measured by
the area under the receiver operating
characteristic curve (16) and should not
be used as a surrogate for accuracy. Dif-
ferent areas under the receiver operating
characteristic curve can have the same !,
and the same areas under the receiver

operating characteristic curve can have dif-
ferent ! values. For example, Taplin et al
(14) studied the accuracy and agreement
of single- and double-reading screening
mammograms by using the area under the
receiver operating characteristic curve and
!. The study included 31 radiologists
who read 120 mammograms. The mean
area under the receiver operating charac-
teristic curve for single-reading mammo-
grams was 0.85, and that for double-read-
ing mammograms was 0.87. However, the
average unweighted ! for patients with
cancer was 0.41 for single-reading mam-
mograms and 0.71 for double-reading
mammograms. The average unweighted
! for patients without cancer was 0.26 for
single-reading mammograms and 0.34
for double-reading mammograms. Dou-
ble reading of mammograms resulted in
better agreement but not in better accu-
racy.

If we assume that agreement implies
accuracy, then we can use measurements
of observed agreement to set a lower limit
for accuracy. Suppose two readers agree
with respect to interpretation in 50% of
the cases; then, by implication, they are
both correct with respect to interpreta-
tion in 50% of the cases about which
they agree and one of them is correct with

respect to interpretation in half (25% of
the total) of the cases about which they
disagree. Therefore, the overall accuracy
of the readings is 75%. Typically, in radi-
ology, observed between-reader agree-
ment is 70%–80%, implying an accuracy
that is 85%–90% (ie, 70% ' 30%/2 to
80% ' 20%/2).

Some new approaches to estimation of
accuracy from agreement have been pro-
posed. These approaches are based on the
assumption that when a majority of read-
ers agree about a diagnosis they are likely
to be right (4,17). We have proposed the
use of a technique called mixture distri-
bution analysis (4,18). At least five read-
ers report the cases by using either a
yes-no response or a rating scale. The
agreement of the group of readers about
each case is fit to a mathematic model,
with the assumption that the sample was
drawn from a population that consists of
easy normal, easy abnormal, and hard
cases. With the computer program, the
population that best fits the sample is
located, and an overall measure of perfor-
mance that we call the relative percent-
age agreement is calculated. We have
found that the relative percentage agree-
ment has values similar to those obtained

TABLE A1
Frequency of Responses of Two Readers Who Rated a Disease as Absent,
Minimal, Moderate, or Severe

Reader 2

Reader 1

TotalAbsent Minimal Moderate Severe

Absent 34 10 2 0 46
Minimal 6 8 8 2 24
Moderate 2 5 4 12 23
Severe 0 1 2 14 17

Total 42 24 16 28 110

Note.—The frequencies in Table A1 are converted into proportions in Table A2 by dividing by the
total number of cases.

TABLE A2
Proportion of Responses of Two Readers Who Rated a Disease as Absent,
Minimal, Moderate, or Severe

Reader 2

Reader 1

TotalAbsent Minimal Moderate Severe

Absent 0.31 0.09 0.02 0 0.42
Minimal 0.05 0.07 0.07 0.02 0.22
Moderate 0.02 0.05 0.04 0.11 0.21
Severe 0 0.01 0.02 0.13 0.15

Total 0.38 0.22 0.15 0.25* 1.00

* Value was rounded.
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by using receiver operating characteristic
curve analysis with proved cases (18,19).

CONCLUSION

Formal evaluations of imaging technol-
ogy by using reader agreement started in
1947 with the publication of an article
about tuberculosis case finding by using
four different chest imaging systems (20).
The author of an editorial that accompa-
nied the article expressed surprise that
there was so much disagreement (21).
History repeated itself when an article
about agreement in screening mammog-
raphy that showed considerable reader
variability (22) was published; this article
was accompanied by an editorial in
which the author expressed surprise in
regard to the extent of disagreement (23).
The consensus of a group of physicians is
frequently the only basis for determina-
tion of a difficult diagnostic decision.
Studies of pathologists who classify can-
cer have shown levels of disagreement
are similar to those associated with hard
decisions in radiology (24). Agreement
usually results from informal discussion;
however, the method used to obtain
agreement can have a large influence on
the decision outcome (25). Formal proce-
dures that are used to achieve agreement
have been proposed (26); although they
can minimize individual bias in achiev-
ing a consensus, they are rarely used. We
hope that this brief review will stimulate
greater use of existing statistics for char-

acterization of agreement and further ex-
ploration of new methods.

APPENDIX

Consider a data set in Table A1 that consists
of four categories. The frequencies in Table
A1 are converted into proportions, which
are included in Table A2, by dividing the
data by the total number of cases.

Table A3 shows the quadratic weights cal-
culated by using Equation (4), as presented
earlier:

wij ! 1 #
#i # j$2

#k # 1$2 ,

where w represents weight, i is the number
of the row, j is the number of the column,
and k is the total number of categories. It is
assumed that disagreement between adja-
cent categories (ie, disagreement for absent
to minimal is 0.89) is not as important as
that between distant categories (ie, disagree-
ment for absent to severe is zero).

The weighted observed agreement is cal-
culated by multiplying the proportion of
responses in each cell of the 4 " 4 table by
the corresponding weighting factor. The
calculations for the first row are as follows:
0.31 " 1.00 & 0.31, 0.09 " 0.89 & 0.08,
0.02 " 0.56 & 0.01, and 0 " 0 & 0.

The results for observed weighted propor-
tions are presented in Table A4. The ex-
pected agreement is calculated by multiply-
ing the row and column total for each cell
of the 4 " 4 table by the corresponding
weighting factor. The calculations for the
first row are as follows: (0.42 " 0.38) "
1.00 & 0.16, (0.42 " 0.22) " 0.89 & 0.08,

(0.42 " 0.15) " 0.56 & 0.03, and (0.42 "
0.25) " 0 & 0.

The results for expected weighted propor-
tions are presented in Table A4. The sum
of all of the cells in regard to observed
weighted proportions (sum, 0.93) in Table
A4 is the weighted observed agreement,
which we call po(w), and the sum of all of
the cells in regard to expected weighted pro-
portions (sum, 0.70) in Table A4 is the
weighted expected agreement, which we
call pe(w). When we apply the equation for
! to the weighted values, we get a weighted
! index of 0.76, which is calculated with the
following equation:

!#w$ !
po#w$ # pe#w$

1 # pe#w$
.

An unweighted ! can be calculated by using
the sum of the diagonal cells in Table A2, or
0.31 ' 0.07 ' 0.04 ' 0.13 & 0.55, to calculate
the observed agreement and the sum of the
diagonal cells in Table A4 with regard to
expected weighted proportions, or 0.16 '
0.05 ' 0.03 ' 0.04 & 0.28, to calculate the
expected agreement. The unweighted ! is 0.37.

The calculation of the appropriate standard
error and the use of the standard error for
testing either the hypothesis that ! is differ-
ent from zero or that ! is different from a
value other than zero is beyond the scope of
this article but is in most basic statistical
texts (6,7).

GLOSSARY

Below is a list of common terms and def-
initions related to the measurement of ob-
server agreement.

Accuracy.—This value is the likelihood of
the interpretation being correct when com-
pared with an independent standard.

Agreement.—This term represents the like-
lihood that one reader will indicate the
same responses as another reader.

Attributes.—An attribute is a categorical
variable that represents a property of the
object being imaged (eg, tumor descriptors
such as mass, calcification, and architec-
tural distortion).

Categorical variables.—Categorical vari-
ables are variables that can be assigned to
specific categories. Categorical variables can
be either ranked variables or attributes.

%.—The ! value is an overall measure of
agreement that is corrected for agreement by
chance. It is sensitive to disease prevalence.

Marginal sums.—A marginal sum is the
sum of the responses in a single row or
column of the data table, and it represents
the total response of one of the readers.

Measurement variable.—Measurement vari-
ables are variables that can be measured or
counted. They are generally divided into
continuous variables (eg, lesion diameter or
volume) and discrete variables (eg, number

TABLE A3
Quadratic Weights for 4 " 4 Table

Absent, 1 Minimal, 2 Moderate, 3 Severe, 4

Absent, 1 1.0 0.89 0.56 0
Minimal, 2 0.89 1.00 0.89 0.56
Moderate, 3 0.56 0.89 1.00 0.89
Severe, 4 0 0.56 0.89 1.00

Note.—Numbers 1–4 are weighting factors that correspond to the respective category.

TABLE A4
Weighted Proportion of Observed and Expected Responses

Disease Rating
Category

Observed Weighted Proportions for
Disease Rating Category

Expected Weighted Proportions for
Disease Rating Category

Absent Minimal Moderate Severe Absent Minimal Moderate Severe

Absent 0.31 0.08 0.01 0 0.16 0.08 0.03 0
Minimal 0.05 0.07 0.06 0.01 0.07 0.05 0.03 0.03
Moderate 0.01 0.04 0.04 0.10 0.04 0.04 0.03 0.05
Severe 0 0.01 0.02 0.13 0 0.02 0.02 0.04
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of lesions, expressed as whole numbers but
never as decimal fractions).

Prevalence.—Prevalence is the proportion
of a particular class of cases in the popula-
tion being studied.

Ranked variables.—Ranked variables are
categorical variables that have a natural or-
der, such as stage of a disease, histologic
grade, or discrete severity index (ie, mild,
moderate, or severe).

Reliability.—Reliability is the likelihood
that one reader will provide the same re-
sponses as those provided by a large consen-
sus group.

Weighted %.—The weighted ! is an overall
measure of agreement that is corrected for
agreement by chance; a weighting factor is
applied to each pair of disagreements to
account for the importance of the disagree-
ment.
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Hypothesis Testing III: Counts
and Medians1

Radiology research involves comparisons that deal with the presence or absence of
various imaging signs and the accuracy of a diagnosis. In this article, the authors
describe the statistical tests that should be used when the data are not distributed
normally or when they are categorical variables. These nonparametric tests are used
to analyze a 2 ! 2 contingency table of categorical data. The tests include the "2

test, Fisher exact test, and McNemar test. When the data are continuous, different
nonparametric tests are used to compare paired samples, such as the Mann-
Whitney U test (equivalent to the Wilcoxon rank sum test), the Wilcoxon signed rank
test, and the sign test. These nonparametric tests are considered alternatives to the
parametric t tests, especially in circumstances in which the assumptions of t tests are
not valid. For radiologists to properly weigh the evidence in the literature, they must
have a basic understanding of the purpose, assumptions, and limitations of each of
these statistical tests.
© RSNA, 2003

The purpose of hypothesis testing is to allow conclusions to be reached about groups of
people by examining samples from the groups. The data collected are analyzed by using
statistical tests, which may be parametric or nonparametric, depending on the nature of
the data to be analyzed. Statistical methods that require specific distributional assump-
tions are called parametric methods, whereas those that require no assumptions about
how the data are distributed are nonparametric methods. Nonparametric tests are often
more conservative tests compared with parametric ones. This means that the test has less
power to reject the null hypothesis (1). Nonparametric tests can be used with discrete
variables or data based on weak measurement scales, consisting of rankings (ordinal scale)
or classifications (nominal scale).

The purpose of this article is to discuss different nonparametric or distribution-free tests
and their applications with continuous and categorical data. For the analysis of continu-
ous data, many radiologists are familiar with the t test, a parametric test that is used to
compare two means. However, misuse of the t test is common in the medical literature (2).
To perform t tests properly, we need to make sure the data meet the following two critical
conditions: (a) The data are continuous, and (b) the populations are distributed normally.
In this article, we introduce the application of nonparametric statistical methods when
these two assumptions are not met. These methods require less stringent assumptions of
the population distributions than those for the t tests. When two populations are inde-
pendent, the Mann-Whitney U test can be used to compare the two population distribu-
tions (3). An additional advantage of the Mann-Whitney U test is that it can be used to
compare ordinal data, as well as continuous data. When the observations are in pairs from
the same subject, we can use either the Wilcoxon signed rank test or the sign test to replace
the paired t test.

For categorical data, the "2 test is often used. The "2 test for goodness of fit is used to
study whether two or more mutually independent populations are similar (or homoge-
neous) with respect to some characteristic (4–12). Another application of the "2 test is a
test of independence. Such a test is used to determine whether two or more characteristics
are associated (or independent). In our discussion, we will also introduce some extensions
of the "2 test, such as the Fisher exact test (13,14) for small samples and the McNemar test
for paired data (15).
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CATEGORICAL DATA

In many cases, investigators in radiology
are interested in comparing two groups
of count data in a 2 ! 2 contingency
table. One of the most commonly used
statistical tests to analyze categorical data
is the "2 test (16). If two groups of sub-
jects are sampled from two independent
populations and a binary outcome is
used for classification (eg, positive or neg-
ative imaging result), then we use the "2

test of homogeneity. Sometimes radiolo-
gists are interested in analyzing the asso-
ciation between two criteria of class-
ification. This results in the test of
independence by using a similar 2 ! 2
contingency table and "2 statistic. When
sample sizes are small, we prefer to use
the Fisher exact test. If we have paired
measurements from the same subject, we
use the McNemar test to compare the
proportions of the same outcome be-
tween these two measurements in the
2 ! 2 contingency table.

!2 Test

The "2 test allows comparison of the
observed frequency with its correspond-
ing expected frequency, which is calcu-
lated according to the null hypothesis in
each cell of the 2 ! 2 contingency table
(Eq [A1], Appendix A). If the expected
frequencies are close to the observed fre-
quencies, the model according to the
null hypothesis fits the data well; thus,
the null hypothesis should not be re-
jected. We start with the analysis of a 2 !
2 contingency table by considering the
following two examples. The same "2 for-
mula is used in both examples, but they
are different in the sense that the data are
sampled in different ways.

Example 1: test of homogeneity between
two groups.—One hundred patients and
100 healthy control subjects are enrolled
in a magnetic resonance (MR) imaging
study. The MR imaging result can be clas-
sified as either “positive” or “negative”
(Table 1). The radiologist is interested in
finding out if the proportion of positive
findings in the patient group is the same
as that in the control group. In other
words, the null hypothesis is that the
proportion of positive findings is the
same in the two groups. The alternative
hypothesis is that they are different. We
call this a test of homogeneity. In this
first example, the two groups (patients
and subjects) are in the rows, and the two
outcomes of positive and negative test
results are in the columns. In the statis-
tical analysis, only one variable, the im-

aging result (classified as positive or neg-
ative), is considered.

The results in Table 1 show that 50
patients and 28 control subjects are cate-
gorized as having positive findings. The
"2 statistic is calculated and yields a P
value of .001 (17). Typically, we reject the
null hypothesis if the P value is less than
.05 (the significance level). In this exam-
ple, we conclude that there is no homo-
geneity between the two groups, since
the proportions of positive imaging re-
sults are different.

Example 2: test of independence between
two variables in one group.—A radiologist
studies gadolinium-based contrast mate-
rial enhancement of renal masses at MR
imaging in 65 patients (18). Table 2
shows that there are 17 patients with en-
hancing renal masses, with 14 malignant
masses and three benign masses at patho-
logic examination. Among the 48 pa-
tients with nonenhancing renal masses,
three masses are malignant and 45 are
benign at pathologic examination. In
this example, the presence or absence of
contrast enhancement is indicated in the
rows, and the malignant and benign
pathologic findings are in the columns.
In this second example, only the total
number of 65 patients is fixed; the pres-
ence or absence of contrast enhancement
is compared with the pathologic result
(malignant or benign). The question of

interest is whether these two variables are
associated. In other words, the null hy-
pothesis is that contrast enhancement of
a renal mass is not associated with the
presence of a malignant tumor, and the
alternative hypothesis is that enhance-
ment and malignancy are associated. In
this example, the "2 statistic yields a P
value less than .001. We reject the null
hypothesis and conclude that the pres-
ence of contrast enhancement at MR im-
aging is associated with renal malignancy.

One potential issue with the "2 test is
that the "2 statistic is discrete, since the
observed frequencies in the 2 ! 2 contin-
gency table are counts. However, the "2

distribution itself is continuous. In 1934,
Yates (12) proposed a procedure to cor-
rect for this possible bias. Although there
is controversy about whether to apply
this correction, it is sometimes used
when the sample size is small. In the first
example discussed earlier, the "2 statistic
was 10.17, and the P value was .001. The
Yates corrected "2 statistic is 9.27 with a P
value of .002. This corrected "2 statistic
yields a smaller "2 statistic, and the P
value is larger after Yates correction. This
indicates that the Yates corrected "2 test
is less powerful in rejecting the null hy-
pothesis. Some applications of Yates cor-
rection in medicine are discussed in the
statistical textbook by Altman (19).

TABLE 1
!2 Test of Homogeneity

Participants
Positive MR

Imaging Result
Negative MR

Imaging Result Total

Patients 50 50 100
Control subjects 28 72 100

Total 78 122 200

Note.—Data are the number of participants. "2 statistic, 10.17; P # .001. The null hypothesis is
that the two populations are homogeneous. We reject the null hypothesis and conclude that the
two populations are different.

TABLE 2
!2 Test of Independence

Presence of Contrast
Enhancement

MR Imaging Finding

TotalMalignant Mass Benign Mass

Enhancement 14 3 17
No enhancement 3 45 48

Total 17 48 65

Note.—Data are the number of masses. "2 statistic, 34.65; P $ .001. The null hypothesis is that
contrast enhancement of a renal mass at MR imaging is not associated with the presence of a
malignant tumor, and the alternative hypothesis is that enhancement and malignancy are associ-
ated. We reject the null hypothesis and conclude that the presence of contrast enhancement is
associated with renal malignancy.
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Fisher Exact Test

When sample sizes are small, the "2

test yields poor results, and the Fisher
exact test is preferred. A general rule of
thumb for its use is when either the sam-
ple size is less than 30 or the expected
number of observations in any one cell of
a 2 ! 2 contingency table is fewer than
five (20). The test is called an “exact” test
because it allows calculation of the exact
probability (rather than an approxima-
tion) of obtaining the observed results or
results that are more extreme. Although
radiologists may be more familiar with
the traditional "2 test, there is no reason
not to use the Fisher exact test in its
place, given the ease of use and availabil-
ity of computer software today.

In example 1, the P value resulting
from use of the "2 test was .001, whereas
the P value for the same data tested by

using the Fisher exact test was .002. Both
tests lead to the same conclusion of lack
of homogeneity between the patient and
control groups. Intuitively, the P value
derived by using the Fisher exact test is
the probability of positive results becom-
ing more and more discrepant between
the two groups. Most statistical software
packages provide computation of the
Fisher exact test (Appendix B).

Example 3: Fisher exact test.—A radiolo-
gist enrolls 20 patients and 20 healthy
subjects in a computed tomographic (CT)
study. The CT result is classified as either
“positive” or “negative.” Table 3 shows
that 10 patients and four healthy subjects
have positive findings at CT. The null
hypothesis is that the two populations
are homogeneous in the number of pos-
itive findings seen at CT.

In this example, the sample sizes in
both the patient and control groups are
small. The Fisher exact test yields a P
value of .10. We retain the null hypoth-
esis because the P value does not indicate
a significant difference, and we conclude
that these two groups are homogeneous.
If we use the "2 test incorrectly, the P
value is .05, which suggests the opposite
conclusion—that the proportions of pos-
itive CT results are different in these two
groups.

McNemar Test for Paired Data

A test for assessment of paired count
data is the McNemar test (15). This test is
used to compare two paired measure-
ments from the same subject. When the
sample size is large, the McNemar test
follows the same "2 distribution but uses
a slightly different formula. Radiology re-
search often involves the comparison of
two paired imaging results from the same
subject. In a 2 ! 2 table, the results of one
imaging test are labeled “positive” and

“negative” in rows, and the results of an-
other imaging test are labeled similarly in
columns. An interesting property of this
table is that there are two concordant
cells in which the paired results are the
same (both positive or both negative) and
two discordant cells in which the paired
results are different for the same subject
(positive-negative or negative-positive).

We are interested in analyzing whether
these two imaging tests show equivalent
results. The McNemar test uses only the
information in the discordant cells and
ignores the concordant cell data. In par-
ticular, the null hypothesis is that the
proportions of positive results are the
same for these two imaging tests, versus
the alternative hypothesis that they are
not the same. Intuitively, the null hy-
pothesis is retained if the discordant pairs
are distributed evenly in the two discor-
dant cells. The following example illus-
trates the problem in more detail.

Example 4: McNemar test for paired
data.—There are 200 patients enrolled in
a study to compare CT and conventional
angiography of coronary bypass grafts for
the diagnosis of graft patency (Table 4).
Seventy-one patients have positive re-
sults with both conventional angiogra-
phy and CT angiography, 86 have nega-
tive results with both, 30 have positive
CT results but negative conventional an-
giographic results, and 13 have negative
CT results but positive conventional an-
giographic results. The McNemar test
compares the proportions of the discor-
dant pairs (13 of 200 vs 30 of 200). The
P value of the McNemar statistic is .02,
which suggests that the proportion of
positive results is significantly different
for the two modalities. Therefore, we
conclude that the ability of these two
modalities to demonstrate graft patency
is different.

Some radiologists may incorrectly
summarize the data in a way shown in
Table 5 and perform a "2 test, as discussed
in example 1 (21). This is a common mis-
take in the medical literature. In example
1, the proportions compared are 101 of
200 versus 84 of 200. The problem is the
assumption that CT angiography and
conventional angiography results are in-
dependent, and thus, the paired relation-
ship between these two imaging tests is
ignored (2,21). The "2 test has less power
to reject the null hypothesis than does
the McNemar test in this situation and
results in a P value of .09. We would
incorrectly conclude that there is no sig-
nificant difference in the ability of these
two modalities to demonstrate graft pa-
tency.

TABLE 3
Fisher Exact Test for Small Samples

Participants

Positive
CT

Result

Negative
CT

Result Total

Patients 10 10 20
Control subjects 4 16 20

Total 14 26 40

Note.—Data are the number of participants.
(Two-sided) Fisher exact test result, P # .10.
For small samples, the Fisher exact test is
used. The null hypothesis is that the two pop-
ulations of patients and control subjects are
homogeneous at CT—that is, they have the
same number of positive results. We retain
the null hypothesis because the P value does
not indicate a significant difference, and we
conclude that these two groups are homoge-
neous. If we incorrectly used the "2 test for
this comparison, the conclusion would have
been the opposite: "2 # 3.96, P # .04.

TABLE 4
McNemar Test for Paired
Comparisons: Angiography versus
CT Results in the Diagnosis of
Coronary Bypass Graft Thrombosis

CT Result

Positive
Angiography

Result

Negative
Angiography

Result Total

Positive 71 30 101
Negative 13 86 99

Total 84 116 200

Note.—Data are the number of CT results.
McNemar "2 result, 5.95; P # .02. The P
value indicates a significant difference, and
therefore, we reject the null hypothesis and
conclude that there is a difference between
these two modalities.

TABLE 5
Incorrect Use of the !2 Test for
Paired Data for the Evaluation of
Angiography versus CT (when paired
data are incorrectly treated as
independent)

Modality
Positive
Result

Negative
Result Total

CT 101 99 200
Angiography 84 116 200

Note.—Data are the number of results. For
the "2 test with the assumption of two inde-
pendent samples, P # .09. We would incor-
rectly conclude that there is no significant
difference between these two modalities.
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HYPOTHESIS TESTING BY
USING MEDIANS

The unpaired and paired t tests require
that the population distributions be nor-
mal or approximately so. In medicine,
however, we often do not know whether
a distribution is normal, or we know that
the distribution departs substantially from
normality.

Nonparametric tests were developed to
deal with situations where the popula-
tion distributions are either not normal
or unknown, especially when the sample
size is small ($30 samples). These tests
are relatively easy to understand and sim-
ple to apply and require minimal as-
sumptions about the population distribu-
tions. However, this does not mean that
they are always preferred to parametric
tests. When the assumptions are met,
parametric tests have higher testing
power than their nonparametric counter-
parts; that is, it is more likely that a false
null hypothesis will be rejected.

Three commonly encountered non-
parametric tests include the Mann-Whit-
ney U test (equivalent to the Wilcoxon
rank sum test), the Wilcoxon signed rank
test, and the sign test.

Comparison of Two Independent
Samples: Mann-Whitney U Test

The Mann-Whitney U test is used to
compare the difference between two pop-
ulation distributions and assumes the
two samples are independent (22). It does
not require normal population distribu-
tions, and the measurement scale can be
ordinal.

The Mann-Whitney U test is used to
test the null hypothesis that there is no
location difference between two popula-
tion distributions versus the alternative
hypothesis that the location of one pop-
ulation distribution differs from the other.
With the null hypothesis, the same loca-
tion implies the same median for the two
populations. For simplicity, we can re-
state the null hypothesis: The medians of
the two populations are the same. Three
alternative hypotheses are available: (a)
The population medians are not equal,
(b) the population median of the first
group is larger than that of the second, or
(c) the population median of the second
group is larger than that of the first. If we
put the two random samples together
and rank them, then, according to the
null hypothesis, which holds that there is
no difference between the two popula-
tions medians, the total rank of one sam-
ple would be close to the total rank of the

other. On the other hand, if all the ranks
of one sample are smaller than the ranks
of the other, then we know almost surely
that the location of one population is
shifted relative to that of the other.

We give two examples of the applica-
tion of the Mann-Whitney U test, one
involving continuous data and the other
involving ordinal data.

Example 5: Mann-Whitney U test for con-
tinuous data.—The uptake of fluorine 18
choline (hereafter, “fluorocholine”) by
the kidney can be considered approxi-
mately distributed normally (23). Let us
say that some results of hypothetical re-
search suggest that fluorocholine uptake
above 5.5 (percentage dose per organ) is
more common in men than in women. If
we are only interested in the patients
whose uptake is over 5.5, the distribution
is no longer normal but becomes skewed.
The Figure shows the uptake over 5.5 in
10 men and seven women sampled from
populations imaged with fluorocholine
for tumor surveillance. We are interested
in finding out if there are any differences
in these populations on the basis of pa-
tient sex.

We can quickly exclude use of the t test
in this example, since the fluorocholine
uptakes we have selected are no longer
distributed normally. The null hypothe-
sis is that the medians for the men and
women are the same. By using the Mann-
Whitney U test, the P value is .06, so we
retain the null hypothesis. We conclude
that the medians of these two popula-
tions are the same at the .05 significance
level, and therefore, men and women
have similar renal uptake of fluorocho-
line. If we had incorrectly used the t test,
the P value would be .02, and we would
conclude the opposite.

Example 6: Mann-Whitney U test for or-
dinal data.—A radiologist wishes to know
which of two different MR imaging se-
quences provides better image quality.
Twenty-four patients undergo MR imag-
ing with a T2-weighted fast spin-echo se-
quence, and 22 other patients are imaged
with the same sequence but with the ad-
dition of fat saturation (Table 6). The im-
age quality is measured by using a stan-
dardized scoring system, ranging from 1
to 100, where 100 is the best image qual-
ity. The null hypothesis is that the me-
dian scores are the same for the two pop-
ulations. In the group imaged with the
first MR sequence, the images of eight
subjects are scored under 25, those of 14
subjects are scored between 25 and 75,
and those of two subjects are scored
above 75. In the group imaged with the
fat-saturated MR sequence, there are
three, 12, and seven subjects in these
three score categories, respectively.

In this example, each patient’s image
score is classified into one of three ordi-
nal categories. Since the observations are
discrete rather than continuous, the t test
cannot be used. Some researchers might
consider the data in Table 6 to be a 2 ! 3
contingency table and use a "2 statistic to
compare the two groups. The P value cor-
responding to the "2 statistic is .08, and
we would conclude that the two groups
have similar image quality. The problem

TABLE 6
Mann-Whitney U Test for Ordinal
Data

Fat
Saturation

Score

Total$25 25–75 %75

No 8 14 2 24
Yes 3 12 7 22

Total 11 26 9 46

Note.—Data are scores from T2-weighted fast
spin-echo MR images obtained with or with-
out fat saturation. Wilcoxon rank sum test,
P # .03. The null hypothesis is that the me-
dian scores for the two types of MR images
are the same. We reject the null hypothesis
and conclude that they are not the same. If
we incorrectly used the "2 test, we would
conclude the opposite: "2 # 5.13, P # .08.

Mann-Whitney U test result for continuous
data (fluorocholine uptake over 5.5 [percent-
age dose per organ] in human kidneys), P #
.06. We retain the null hypothesis that there is
no difference in the medians, and we conclude
that the fluorocholine renal uptake in men
and women is similar at the .05 significance
level (the marginal P value suggests a trend
toward a significant difference). If we had in-
correctly used the t test, we would have con-
cluded the opposite: P # .02.
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is that the three image quality score cat-
egories are only treated as nominal vari-
ables, and their ordinal relationship is
not accounted for in the "2 test. An alter-
native test that allows us to use this in-
formation is the Mann-Whitney U test.
The Mann-Whitney U test yields a P
value of .03. We reject the null hypothe-
sis and conclude that the median image
scores are different.

Comparison of Paired Samples:
Wilcoxon Signed Rank Test

The Wilcoxon signed rank test is an
alternative to the paired t test. Each
paired sample is dependent, and the data
are continuous. The assumption needed
to use the Wilcoxon signed rank test is
less stringent than the assumptions
needed for the paired t test. It requires
only that the paired population be dis-
tributed symmetrically about its median
(24).

The Wilcoxon signed rank test is used
to test the null hypothesis that the me-

dian of the paired population differences
is zero versus the alternative hypothesis
that the median is not zero. Since the
distribution of the differences is symmet-
ric about the mean, it is equivalent to
using the mean for the purpose of hy-
pothesis testing, as long as the sample
size is large enough (at least 10 rankings).

We rank the absolute values of the
paired differences from the sample. With
the null hypothesis, we would expect the
total rank of the pairs whose differences
are negative to be comparable to the total
rank of the pairs whose differences are
positive. The following example shows
the application of the Wilcoxon signed
rank test.

Example 7: paired data.—A sample of 20
patients is used to compare ring enhance-
ment between T1-weighted spin-echo
MR images and fat-saturated T1-weighted
spin-echo MR images obtained after con-
trast material administration (Table 7).
We notice that the image quality scores
on fat-saturated T1-weighted spin-echo

MR images in case 7 is 98, which is much
higher than the others. As a result, the
difference in values between the two se-
quences is also much higher than that for
the other paired differences. It would be
unwise to use a paired t test in this case,
since the t test is sensitive to extreme
values in a sample and tends to incor-
rectly retain a false null hypothesis as a
consequence. The nonparametric tests
are more robust to data extremes, and
thus, the Wilcoxon signed rank test is
preferred in this case. The null hypothe-
sis states that the median of the paired
MR sequence differences is zero. The Wil-
coxon signed rank test provides a P value
of .02, so we reject the null hypothesis.
We conclude that the fat-saturated MR
sequence showed ring enhancement bet-
ter than did the MR sequence without fat
saturation. If we had incorrectly used the
paired t test, the P value would be .07,
and we would have arrived at the oppo-
site conclusion.

Comparing Paired Samples:
Sign Test

The sign test is another nonparametric
test that can be used to analyze paired
data. Unlike the Wilcoxon signed rank
test or the paired t test, this test requires
neither a symmetric distribution nor a
normal distribution of the variable of in-
terest. The only assumption underlying
this test is that the data are continuous.
Since the distribution is arbitrary with
the sign test, the hypothesis of interest
focuses on the median rather than the
mean as a measure of central tendency.
In particular, the null hypothesis for
comparing paired data is that the median
difference is zero. The alternative hy-
pothesis is that the median difference is
not, is greater than, or is less than zero.
This simplistic test considers only the
signs of the differences between two mea-
surements and ignores the magnitudes of
the differences. As a result, it is less pow-
erful than the Wilcoxon signed rank test,
and a false null hypothesis is often not
rejected (25).

SUMMARY

Hypothesis testing is a method for devel-
oping conclusions about data. Radiology
research often produces data that require
nonparametric statistical analyses. Non-
parametric tests are used for hypothesis
testing when the assumptions about the
data distributions are not valid or when
the data are categorical. We have dis-
cussed the most common of these sta-

TABLE 7
Wilcoxon Signed Rank Test for Paired Comparisons of Ring Enhancement
between Two Spin-Echo MR Sequences

Case No.

MR Sequence*

Difference†

Absolute
Value of

Difference‡ Rank†
T1-

weighted
Fat-saturated
T1-weighted

1 45 43 &2 2 5
2 45 42 &3 3 8
3 49 47 &2 2 5
4 50 47 &3 3 8
5 49 48 &1 1 3
6 44 50 6 6 13.5
7 42 98 56 56 20
8 49 47 &2 2 5
9 39 44 5 5 11

10 42 42 0 0 1.5
11 44 54 10 10 18
12 47 53 6 6 13.5
13 42 53 11 11 19
14 45 54 9 9 16.5
15 44 48 4 4 10
16 41 47 6 6 13.5
17 45 54 9 9 16.5
18 50 47 &3 3 8
19 51 51 0 0 1.5
20 42 48 6 6 13.5

Note.—Wilcoxon signed rank test, P # .02. The null hypothesis is that the median of the paired
population differences is zero. The Wilcoxon signed rank test result indicates a significant differ-
ence, and therefore, we conclude that the enhanced fat-saturated T1-weighted MR sequence
showed ring enhancement better than did the conventional enhanced T1-weighted MR sequence.
If we had incorrectly used the paired t test, the P value would be .07, and we would have had the
opposite conclusion. Like the t test, the sign test produced a P value of .50, and the conclusion
would be that the two sequences are the same.

* Data are image quality scores on MR images after contrast material administration.
† Difference in enhancement values between MR sequences.
‡ Rank of the absolute values of the differences; when there is a tie in the ranking, an average

ranking is assigned—for example, rank 16.5 rather than ranks 16 and 17 for the tied case numbers
14 and 17; and rank 13.5 for the four cases (6, 12, 16, and 20) that compose ranks 12, 13, 14, and
15.
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tistical tests and provided examples to
demonstrate how to perform them. For ra-
diologists to properly weigh the evidence
in our literature, we need a basic under-
standing of the purpose, assumptions,
and limitations of each of these statistical
tests. Understanding how and when
these methods are used will strengthen
our ability to evaluate the medical litera-
ture.

APPENDIX A

The "2 formula is based on the following
equation:

"2 ! '!(Fo & Fe)2

Fe " , (A1)

where Fo is the frequency observed in each
cell, and Fe is the frequency expected in
each cell, which is calculated by multiply-
ing the row frequency by the quotient of
the column frequency divided by total sam-
ple size.

APPENDIX B

Examples of statistical software that is easily
capable of calculating "2 and McNemar sta-
tistics include SPSS, SAS, StatXact 5, and
EpiInfo (EpiInfo allows calculation of the
Fisher exact test and may be downloaded at
no cost from the Centers for Disease Control
and Prevention Web site at www.cdc.gov).
Other statistical Web sites include fonsg3
.let.uva.nl/Service/Statistics.html, department
.obg.cuhk.edu.hk/ResearchSupport/WhatsNew
.asp, and www.graphpad.com/quickcalcs

/Contingency1.cfm (all Web sites accessed
January 30, 2003).
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Receiver Operating
Characteristic Curves and
Their Use in Radiology1

Sensitivity and specificity are the basic measures of accuracy of a diagnostic test;
however, they depend on the cut point used to define “positive” and “negative”
test results. As the cut point shifts, sensitivity and specificity shift. The receiver
operating characteristic (ROC) curve is a plot of the sensitivity of a test versus its
false-positive rate for all possible cut points. The advantages of the ROC curve as a
means of defining the accuracy of a test, construction of the ROC, and identification
of the optimal cut point on the ROC curve are discussed. Several summary measures
of the accuracy of a test, including the commonly used percentage of correct
diagnoses and area under the ROC curve, are described and compared. Two
examples of ROC curve application in radiologic research are presented.
© RSNA, 2003

Sensitivity and specificity are the basic measures of the accuracy of a diagnostic test. They
describe the abilities of a test to enable one to correctly diagnose disease when disease is
actually present and to correctly rule out disease when it is truly absent. The accuracy of
a test is measured by comparing the results of the test to the true disease status of the
patient. We determine the true disease status with the reference standard procedure.

Consider as an example the test results of 100 patients who have undergone mammog-
raphy (Table 1). According to biopsy results and/or 2-year follow-up results (ie, the
reference standard procedures), 50 patients actually have a malignant lesion and 50
patients do not. If these 100 test results were from 100 asymptomatic women without a
personal history of breast cancer, then we might define a positive test result as any that
represents a “suspicious” or “malignant” finding and a negative test result as any that
represents a “normal,” “benign,” or “probably benign” finding. We have used a cut point
for defining positive and negative test results. The cut point is located between the
suspicious and probably benign findings. The estimated sensitivity with this cut point is
(18 " 20)/50 ! 0.76, and the specificity is (15 " 3 " 18)/50 ! 0.72.

Alternatively, if these 100 test results were from 100 asymptomatic women with a
personal history of breast cancer, then we might use a different cut point, such that a
positive test result represents a probably benign, suspicious, or malignant finding and a
negative test result represents a normal or benign finding. The estimates of sensitivity and
specificity would change (ie, they would now be 0.96 and 0.36, respectively).

Important point: Sensitivity and specificity depend on the cut point used to define
positive and negative test results. As the cut point shifts, the sensitivity increases while the
specificity decreases, or vice versa.

COMBINED MEASURES OF SENSITIVITY AND SPECIFICITY

It is often useful to summarize the accuracy of a test by using a single number; for example,
when comparing two diagnostic tests, it is easier to compare a single number than to
compare both the sensitivity and the specificity values of the tests. There are several such
summary measures; I will describe a popular but easily misinterpreted one that is usually
referred to simply as accuracy. Using the second cut point in Table 1, we can compute
accuracy as the percentage of correct diagnoses in the entire sample—that is, (48 "
18)/100 ! 0.66, or 66%. The strength of this measure of accuracy is its simple computa-
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tion. It has several limitations, however:
Its magnitude varies as the prevalence of
disease varies in the sample, it is calcu-
lated on the basis of only one cut point,
and false-positive and false-negative re-
sults are treated as if they are equally
undesirable. As an illustration of the first
limitation, note that in Table 2 the prev-
alence of disease is 5% instead of the 50%
in Table 1. The sensitivity and specificity
values are the same in Tables 1 and 2, yet
the estimated accuracy value in Table 2
drops to (48 " 342)/1,000 ! 0.39, or
39%.

Important point: A measure of test ac-
curacy is needed that combines sensitiv-
ity and specificity but does not depend
on the prevalence of disease.

RECEIVER OPERATING
CHARACTERISTIC CURVE

In 1971, Lusted (1) described how re-
ceiver operating characteristic (ROC)
curves could be used to assess the accu-
racy of a test. An ROC curve is a plot of
test sensitivity (plotted on the y axis) ver-
sus its FPR (or 1 # specificity) (plotted on

the x axis). Each point on the graph is
generated by using a different cut point.
The set of data points generated from the
different cut points is the empirical ROC
curve. We use lines to connect the points
from all the possible cut points. The re-
sulting curve illustrates how sensitivity
and the FPR vary together.

Figure 1 illustrates the empirical ROC
curve for the mammography example.
Since in our example there are five cate-
gories for the test results, we can com-
pute four cut points for the ROC curve.
The two endpoints on the ROC curve are
0,0 and 1,1 for FPR, sensitivity. The
points labeled 1 and 2 on the curve cor-
respond to the first and second cut
points, respectively, that are defined in
the note to Table 1. Estimations of the
other points are provided in Table 3.

The ROC plot has many advantages
over single measurements of sensitivity
and specificity (2). The scales of the
curve—that is, sensitivity and FPR—are
the basic measures of accuracy and are
easily read from the plot; the values of
the cut points are often labeled on the
curve as well. Unlike the measure of ac-

curacy defined in the previous section (ie,
the percentage of correct diagnoses), the
ROC curve displays all possible cut points.
Because sensitivity and specificity are inde-
pendent of disease prevalence, so too is the
ROC curve. The curve does not depend on
the scale of the test results (ie, we can alter
the test results by adding or subtracting a
constant or taking the logarithm or square
root without any change to the ROC curve)
(3). Lastly, the ROC curve enables a direct
visual comparison of two or more tests on
a common set of scales at all possible cut
points.

It is often convenient to make some
assumptions about the distribution of
the test results and then to draw the ROC
curve on the basis of the assumed distri-
bution (ie, assumed model). The result-
ing curve is called the fitted or smooth
ROC curve. The fitted curve for the mam-
mography study is plotted in Figure 1; it
was constructed from a binormal distri-
bution (ie, two normal distributions: one
for the test results of patients without
breast cancer and another for test results
of patients with breast cancer) (Fig 2).
The binormal distribution is the most

TABLE 1
Results from Mammography Study with 100 Patients

Cut Point and Reference
Standard Result

Radiologist’s Interpretation

TotalNormal Benign Probably Benign Suspicious Malignant

Cut point 1*
Reference standard result

Cancer present 2 0 10 18† 20† 50
Cancer absent 15 3 18 13‡ 1‡ 50

Cut point 2*
Reference standard result

Cancer present 2 0 10† 18† 20† 50
Cancer absent 15 3 18‡ 13‡ 1‡ 50

Note.—Data are numbers of patients with the given result in a fictitious study of mammography in which 50 patients had a malignant lesion and 50
did not.

* For cut point 1, a positive result is defined as a test score of suspicious or malignant; for cut point 2, a positive result is defined as a test score of
probably benign, suspicious, or malignant.

† Test results considered true-positive (for estimating sensitivity) with this cut point.
‡ Test results considered false-positive (for estimating the false-positive rate [FPR] or specificity) with this cut point.

TABLE 2
Effect of Prevalence on Accuracy

Reference
Standard

Result

Radiologist’s Interpretation

TotalNormal Benign Probably Benign Suspicious Malignant

Cancer present 2 0 10 18 20 50
Cancer absent 285 57 342 247 19 950

Note.—Data are numbers of patients with the given result in a fictitious study of mammography with 1,000 patients. This data set represents a
modification of the data set in Table 1 so that the prevalence of cancer is 5%. When cut point 2 (described in the note to Table 1) is used with this data
set, the estimated sensitivity ([10 " 18 " 20]/50 ! 0.96) and specificity ([285 " 57]/950 ! 0.36) are the same as with the data set in Table 1. However,
one commonly used estimate of overall accuracy is the percentage of correct diagnoses in the sample. With this data set it is 39% ([10 " 18 " 20 "
285 " 57]/1,000 ! 0.39), which is not the same as with the data set in Table 1.
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commonly used distribution for estimat-
ing the smooth ROC curve. There are
computer programs (for example, www-
radiology.uchicago.edu/sections/roc/software.cgi)
for estimating the smooth ROC curve on
the basis of the binormal distribution;
these programs make use of a statistical
method called maximum likelihood esti-
mation.

An ROC curve can be constructed from
objective measurements of a test (eg, se-
rum glucose level as a test for diabetes),
objective evaluation of image features
(eg, the computed tomographic [CT] at-
tenuation coefficient of a renal mass rel-
ative to normal kidney), or subjective di-
agnostic interpretations (eg, the five-
category Breast Imaging Reporting and
Data System scale used for mammo-
graphic interpretation) (5). The only re-
quirement is that the measurements or
interpretations can be meaningfully
ranked in magnitude. With objective
measurements the cut point is explicit, so
one can choose from an infinite number
of cut points along the continuum of the
test results. For diagnostic tests whose re-
sults are interpreted subjectively, the cut
points are implicit or latent in that they
only exist in the mind of the observer (6).
Furthermore, it is assumed that each ob-
server has his or her own set of cut
points.

The term receiver operating characteristic
curve comes from the idea that, given the
curve, we, the receivers of the informa-
tion, can use (or operate at) any point on
the curve by using the appropriate cut
point. The clinical application deter-
mines which cut point is used. For exam-

ple, for evaluating women with a per-
sonal history of breast cancer, we need a
cut point with good sensitivity (eg, cut
point 2 in Table 1), even if the FPR is
high. For evaluating women without a
personal history of breast cancer, we re-
quire a lower FPR. For each application
the optimal cut point (2,7) can be deter-
mined by finding the sensitivity and
specificity pair that maximizes the func-
tion sensitivity # m(1 # specificity),
where m is the slope of the ROC curve as
follows:

m !
ProbNorm

ProbDis
"

$CFP # CTN%

$CFN # CTP%
,

ProbNorm is the probability that the pa-
tient’s condition is normal before the test
is performed, ProbDis is the probability
that the patient has the disease before the
test is performed, CFP is the cost (ie, the
financial cost and/or health “cost”) of a
false-positive result, CTN is the cost of a
true-negative result, CFN is the cost of a
false-negative result, and CTP is the cost
of a true-positive result.

MEASURES OF ACCURACY
BASED ON THE ROC CURVE

One of the most popular measures of the
accuracy of a diagnostic test is the area
under the ROC curve. The ROC curve
area can take on values between 0.0 and
1.0. A ROC curve with an area of 1.0 is
shown in Figure 3. A test with an area
under the ROC curve of 1.0 is perfectly
accurate because the sensitivity is 1.0
when the FPR is 0.0. In contrast, a test
with an area of 0.0 is perfectly inaccurate.
That is, all patients with disease are in-
correctly given negative test results and
all patients without disease are incor-
rectly given positive test results. With
such a test it would be better to convert it
into a test with perfect accuracy by re-
versing the interpretation of the test re-

sults. The practical lower bound for the
ROC curve area is then 0.5. The line seg-
ment from 0,0 to 1,1 has an area of 0.5; it
is called the chance diagonal (Fig 3). If we
relied purely on guessing to distinguish
patients with from patients without dis-
ease, then the ROC curve would be ex-
pected to fall along this diagonal line.
Diagnostic tests with ROC curve areas
greater than 0.5 have at least some ability
to discriminate between patients with
and those without disease. The closer the
ROC curve area is to 1.0, the better the
diagnostic test. One method (8) of esti-
mating the area under the empirical ROC
curve is described and illustrated in the
Appendix. There are other methods
(9,10) of estimating the area under the
empirical ROC curve and its variance; all
of these methods rely on nonparametric
statistical methods.

The ROC curve area has several inter-
pretations: (a) the average value of sensi-
tivity for all possible values of specificity,
(b) the average value of specificity for all
possible values of sensitivity (11,12), and
(c) the probability that a randomly se-
lected patient with disease has a test re-
sult that indicates greater suspicion than
a randomly chosen patient without dis-
ease (9).

In Figure 1 the area under the empiri-
cal ROC curve for mammography is 0.82;
that is, if we select two patients at ran-
dom—one with breast cancer and one
without—the probability is 0.82 that the
patient with breast cancer will have a
more suspicious mammographic result.
The area under the fitted curve is slightly
larger at 0.84. When the number of cut
points is small, the area under the empir-
ical ROC curve is usually smaller than the
area under the fitted curve.

The ROC curve area is a good summary
measure of test accuracy because it does
not depend on the prevalence of disease
or the cut points used to form the curve.

TABLE 3
Construction of Empirical ROC Curve for Mammography Study

Cut Point Sensitivity* FPR†

Between normal and benign 0.96 (48/50) 0.70 (35/50)
Between benign and probably benign 0.96 (48/50) 0.64 (32/50)
Between probably benign and suspicious 0.76 (38/50) 0.28 (14/50)
Between suspicious and malignant 0.40 (20/50) 0.02 (1/50)

Note.—These data represent estimations of the points on the empirical ROC curve marked with
open circles and depicted in Figure 1. The ROC curve in Figure 1 was constructed on the basis of
the data in Table 1, with sensitivity and the FPR estimated at each possible cut point.

* Data in parentheses are those used to calculate the sensitivity value.
† Data in parentheses are those used to calculate the FPR (or 1 # specificity) value.

Figure 1. Graph of the empirical and fitted
ROC curves for the mammography study. The
points on the empirical curve are marked with
open circles and are estimated in Table 3. The
points labeled 1 and 2 on the curve correspond
to the first and second cut points, respectively,
that are defined in the note to Table 1.
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However, once a test has been shown to
distinguish patients with disease from
those without disease well, the perfor-
mance of the test for particular applica-
tions (eg, diagnosis, screening) must be
evaluated. At this stage, we may be inter-
ested in only a small portion of the ROC
curve. Furthermore, the ROC curve area
may be misleading when one is compar-
ing the accuracies of two tests. Figure 4
illustrates the ROC curves of two tests
with equal area. At the clinically impor-
tant FPR range (for example, 0.0–0.2),
however, the curves are different: ROC
curve A demonstrates higher sensitivity
than does ROC curve B. Whenever the
ROC curves of two tests cross (regardless
of whether or not their areas are equal), it
means that the test with superior accu-
racy (ie, higher sensitivity) depends on
the FPR range; a global measure of accu-
racy, such as the ROC curve area, is not
helpful here.

Important point: There are situations
where we need a more refined measure of
diagnostic test accuracy than the area un-
der the ROC curve.

One alternative is to use the ROC curve
to estimate sensitivity at a fixed FPR (or,
as appropriate, we could use the FPR at a
fixed sensitivity). As an example, in Fig-
ure 1 the sensitivity at a fixed FPR of 0.10
is 0.60. This measure of accuracy allows
us to focus on the portion of the ROC
curve that is of clinical relevance.

Another alternative measure of accuracy
is the partial area under the ROC curve. It is
defined as the area between two FPRs, e1
and e2 (or, as appropriate, the area between
two false-negative rates). If e1 ! 0 and e2 !
1, then the area under the entire ROC
curve is specified. If e1 ! e2, then the sen-
sitivity at a fixed FPR is given. The partial
area measure is thus a “compromise” be-
tween the entire ROC curve area and the
sensitivity at a fixed FPR.

To interpret the partial area, we must
consider its maximum possible value.
The maximum area is equal to the width
of the interval—that is, e2 # e1 (13). Mc-
Clish (13) and Jiang et al (14) recom-
mend standardizing the partial area by
dividing it by its maximum value. Jiang
et al (14) refer to this standardized partial
area as the partial area index. The partial
area index is interpreted as the average
sensitivity for the range of FPRs exam-
ined (or the average FPR for the range of
sensitivities examined). As an example,
in Figure 1, the partial area in the FPR
range of 0.00–0.20 is 0.112; the partial
area index is 0.56. In other words, when
the FPR is between 0.00 and 0.20, the
average sensitivity is 0.56.

EXAMPLES OF ROC CURVES
IN RADIOLOGY

There are many examples of the applica-
tion of ROC curves in radiologic research. I
present two examples here. The first ex-
ample illustrates the comparison of two
diagnostic tests and the identification of
a useful cut point. The second example
describes a multireader study of the differ-
ences in diagnostic accuracy of two tests
and differences in reader performance.

The first example is the study of Mush-
lin et al (15) of the accuracy of magnetic
resonance (MR) imaging for detecting
multiple sclerosis (MS). Three hundred
three patients suspected of having MS
underwent MR imaging and CT of the
head. The images were read separately by
two neuroradiologists without knowl-
edge of the clinical course of or final di-
agnosis given to the patients. The images
were scored as definitely showing MS,
probably showing MS, possibly showing
MS, probably not showing MS, or defi-
nitely not showing MS. The reference
standard consisted of results of a review
of the clinical findings by a panel of MS
experts, results of follow-up for at least 6
months, and results of other diagnostic
tests; the results of CT and MR imaging
were not included to avoid bias.

The estimated ROC curve area for MR
imaging was 0.82, indicating a good, but
not definitive, test. In contrast, the esti-
mated ROC curve area of CT was only
0.52; this estimated area was not signifi-
cantly different from 0.50, indicating
that CT results were no more accurate
than guessing for diagnosing MS. The au-
thors concluded that a “definite MS”

Figure 2. Graph shows the binormal distribution that best fits the
mammography study data. By convention, the distribution of unob-
served variables for the patients without cancer is centered at zero (ie,
&1 ! 0) with variance ('1

2) equal to 1. For these data, the center of the
distribution of the unobserved variables for the patients with cancer
is estimated to be 1.59 (ie, &2 ! 1.59) with variance ('2

2) estimated to
be 1.54. The binormal distribution can be described by its two pa-
rameters (4), a and b, as a ! (&1 # &2)/'2 and b ! '1/'2. The four cut
points z1, z2, z3, and z4 define the five categories of test results. That
is, a variable with a value below the point defined by z1 indicates a
normal result; a variable with a value between z1 and z2, a benign
result; a variable with a value between z2 and z3, a probably benign
result; a variable with a value between z3 and z4, a suspicious result;
and a variable with a value above the point defined by z4, a malignant
result. Note that the binormal variables exist only in the mind of the
reader (ie, they are unobserved). When the reader applies the cut
points z1, z2, z3, and z4 to the unobserved variables, we obtain the
observed five categories of test results.

Figure 3. Graph shows comparison of three
ROC curves. A perfect test has an area under
the ROC curve of 1.0. The chance diagonal has
an ROC area of 0.5. Tests with some discrimi-
nating ability have ROC areas between these
two extremes.
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reading at MR imaging essentially estab-
lishes the diagnosis of MS (MR images in
only two of 140 patients without MS
were scored as definitely showing MS, for
an FPR of 1%). However, a normal MR
imaging result does not conclusively ex-
clude the diagnosis of MS (MR images in
35 of 163 patients with MS were scored as
definitely not showing MS, for a false-
negative rate of 21%).

In the second example, Iinuma et al
(16) compared the accuracy of conven-
tional radiography and digital radiogra-
phy for the diagnosis of gastric cancers.
One hundred twelve patients suspected
of having gastric cancer underwent con-
ventional radiography, and 113 different
patients with similar symptoms and
characteristics underwent digital radiog-
raphy. Six readers interpreted the images
from all 225 patients; the readers were
blinded to the clinical details of the pa-
tients. The images were scored with a six-
category scale, in which a score of 1 in-
dicated that cancer was definitely absent;
a score of 2, cancer was probably absent;
a score of 3, cancer was possibly absent; a
score of 4, cancer was possibly present; a
score of 5, cancer was probably present;
and a score of 6, cancer was definitely
present. The diagnostic standard consisted
of the findings of a consensus panel of
three radiologists (not the same individuals
as the six readers) who examined the pa-
tients and were told of the findings of
other tests, such as endoscopy and his-
topathologic examination after biopsy.

The ROC curve areas of the six readers
were all higher with digital radiography
than with conventional radiography; the
average ROC curve areas with digital and
conventional radiography were 0.93 and

0.80, respectively. By plotting the fitted
ROC curve areas of each of the six read-
ers, the authors determined that for five
of the six readers, digital radiography re-
sulted in higher sensitivity for all FPRs;
for the sixth reader, digital radiography
resulted in considerably higher sensitiv-
ity only at a low FPR.

In summary, the ROC curve has many
advantages as a measure of the accuracy
of a diagnostic test: (a) It includes all pos-
sible cut points, (b) it shows the relation-
ship between the sensitivity of a test and
its specificity, (c) it is not affected by the
prevalence of disease, and (d) from it we
can compute several useful summary
measures of test accuracy (eg, ROC curve
area, partial area). The ROC curve alone
cannot provide us with the optimal cut
point for a particular clinical application;
however, given information about the
pretest probability of disease and the rel-
ative costs of diagnostic test errors, we
can find the optimal cut point on the
ROC curve. There are many study design
issues (eg, patient and reader selection,
verification and diagnostic standard bias)
that need to be considered when one is
conducting and interpreting the results
of a study of diagnostic test accuracy.
Many of these issues will be covered in a
future article.

APPENDIX

The area under the empirical ROC curve
can be estimated as follows: First, consider
every possible pairing of patients with dis-
ease and patients without disease. Give each

pair a score of 1.0 if the test result for the
patient with disease is higher (ie, more sus-
picious for disease), a score of 0.5 if the test
results are the same, and a score of 0.0 if the
test result for the patient with disease is
lower (ie, less suspicious for disease). Sec-
ond, take the sum of these scores. If there
are N nondiseased patients and M diseased
patients in the sample, then there are M ( N
scores. Finally, divide the sum of these
scores by (M ( N). This gives the estimate of
the area under the empirical ROC curve.

Figure A1 depicts a fictitious data set. The
process described and illustrated in the figure
can be written mathematically as follows (8):
Let Xj denote the test score of the jth patient
with disease and Yk denote the test score of
the kth patient without disease. Then,

A !
1

$M " N% !
$ j!1%

M !
$k!1%

N

score$Xj, Yk%,

where A is the estimate of the area under
the empirical ROC curve and score(Xj, Yk) is
the score assigned to the pair composed of
the jth patient with disease and the kth
patient without disease. The score equals 1
if Xj is greater than Yk, equals 1

2
if Xj is equal

to Yk, and equals 0 if Xj is less than Yk. The
symbol in the following formula

!
$k!1%

N

ck

is called a summation sign. It means that we
take the sum of all of the ck values, where k is
from 1 to N. So, if N is equal to 12, then

!
$k!1%

N

ck ! c1 $ c2 $ c3 $ · · · $ c12.

Figure 4. Graph shows two crossing ROC
curves. The ROC areas of the two tests are the
same at 0.80; however, for the clinically im-
portant range (ie, an FPR of less than 0.20), test
A is preferable to test B.

Figure A1. Fictitious data set and example of how to calculate the area under the empirical ROC
curve.
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Primer on Multiple Regression
Models for Diagnostic Imaging
Research1

This article provides an introduction to multiple regression analysis and its applica-
tion in diagnostic imaging research. We begin by examining why multiple regres-
sion models are needed in the evaluation of diagnostic imaging technologies. We
then examine the broad categories of available models, notably multiple linear
regression models for continuous outcomes and logistic regression models for
binary outcomes. The purpose of this article is to elucidate the scientific logic,
meaning, and interpretation of multiple regression models by using examples from
the diagnostic imaging literature.
© RSNA, 2003

Readers of the diagnostic imaging literature increasingly encounter articles with the results
of multiple regression analyses. Typically, these analyses are performed to examine the
relation of an outcome and several explanatory factors for the purpose of quantifying the
effect of the explanatory factors on the outcome and/or predicting the outcome. For
example, multiple regression modeling is used to study which combinations of imaging
features are important predictors of the presence of disease. In this article and in the
statistics literature, the explanatory variables are also referred to as covariates or indepen-
dent variables, and the outcome variable is also referred to as the response or dependent
variable. If the outcome is represented by a continuous variable, such as cost of care, then
linear regression is often used. If the outcome is a dichotomous variable, such as presence
or absence of disease, then logistic regression is commonly used. These modeling tech-
niques provide an important tool in medical research. They enhance our ability to
disentangle the nature of the relation between multiple factors that affect a single out-
come. In this article, we examine why investigators choose to use multiple regression
methods and how analyses with these methods should be interpreted. We use examples
from the radiology literature as illustrations and focus on the meaning and interpretation
of these models rather than on the methods and software used for building them.

WHAT IS REGRESSION ANALYSIS?

Regression analysis provides a quantitative approach to the assessment of the relation
between two or more variables, one of which is considered the dependent or response
variable, and the others are considered the independent or explanatory variables (also
called “covariates”). The purpose of the analysis may be to estimate the effect of a covariate
or to predict the value of the response on the basis of the values of the covariates. In both
cases, a regression model is developed to predict the value of the response. The way in
which a model is built depends on the specific research question and the nature of the
data. Each regression model incorporates assumptions regarding the nature of the data. If
these assumptions are incorrect, the model may be invalid, and the interpretation of the
data that is based on that model may be incorrect. The process of fitting such a model
involves the specification of a shape or curve for the expected value of the response and
the examination of how closely the data fit this specified shape. For example, the simple
linear regression model assumes a straight-line relation between the single independent
variable and the expected value of the dependent variable. The slope and intercept of this
straight line are estimated from the data. The fitted model can then be used to estimate the
effect of the independent variable and can also be used to predict future values of the
dependent variable, which correspond to specific values of the independent variable.
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WHY ARE MULTIPLE
REGRESSION MODELS
USED IN DIAGNOSTIC
IMAGING?

Multiple Factors of Interest

Multiple regression analyses may be
used by investigators to examine the im-
pact of multiple factors (independent
variables) on a single outcome of interest
(dependent variable). Sunshine and
Burkhardt (1), for example, assembled
survey data from 87 radiology groups on
practice patterns. The authors used these
data to examine the relation between the
number of procedures each radiologist
performed per year (dependent variable)
and several independent variables, in-
cluding academic status of the group, an-
nual hours worked by each full-time ra-
diologist, group size, and the proportion
of “high-productivity” procedures (Table
1). High-productivity procedures are de-
fined by the authors as those that require
more mental effort, stress, physical effort,
and training than do other types of pro-
cedures. Such procedures include CT,
MR, and interventional or angiographic
procedures. On the basis of the results in
Table 1, it appears that workload, as mea-
sured by the dependent variable, is sig-
nificantly lighter in academic groups
than that in non-academic groups and
decreases marginally with increasing
group size. In this model, it appears that
workload is not associated with the other
two factors, namely group size and pro-
portion of high-productivity procedures.
The authors also report that this regres-
sion model explains only a modest
amount of the variability in the depen-
dent variable and “did not yield very ac-
curate results.” We return to the interpre-
tation of Table 1 later in this article.

Adjustment for Potential
Confounding

Multiple regression techniques may
also be used to adjust analyses for poten-
tial confounding factors so that the influ-
ence of these extraneous factors is quan-
tified and removed from the evaluation
of the association of interest. Extraneous
or confounding factors are those that are
associated with both the exposure and
the outcome of interest but are not con-
sequences of the exposure. Consider, for
example, a study to compare two diag-
nostic procedures (independent variable)
on the basis of their impact on a patient
outcome (death within a fixed follow-up
period in this example). A factor such as

patient age may play a role in decisions
about which procedure will be performed
but may also be related to the outcome.
In this case, age would be a potential
confounder. Clearly, confounding is a
major consideration in observational
studies as contrasted with randomized
clinical trials, because in the former, par-
ticipants are not randomly assigned to
one imaging modality or another.

Goodman et al (2) compared results in
patients evaluated for suspected pulmo-
nary embolism with helical CT with
those evaluated with ventilation-perfu-
sion scintigraphy to determine whether
there is a difference in the number of
pulmonary embolisms and deaths in the
90 days following the diagnostic imaging
evaluation. The population of patients
evaluated with CT was more likely to
have been referred from the intensive
care unit (ICU) (and, hence, more likely
to have severe co-morbid disease condi-
tions), was older, and was at increased
risk of pulmonary embolism due to pa-
tient immobilization and patient malig-
nancy than were those evaluated with
ventilation-perfusion scintigraphy. To
adjust for these potential confounders,
the authors included them as indepen-
dent variables in a logistic regression
analysis and evaluated the association
between imaging methods and death
within 90. As a result of this adjustment,
the magnitude of the estimated effect of
imaging on mortality, as measured by
means of the OR, changed from 3.42 to
2.54. We will return to this point later in
the discussion of logistic regression.

Prediction

Regression models are also used to pre-
dict the value of a response variable using
the explanatory variables. For example,
to develop optimal imaging strategies for

patients after trauma, Blackmore et al
used clinical data from trauma patients
seen in the emergency room to predict
the risk of cervical spine fracture (3). The
authors evaluated 20 potential clinical
predictors of cervical spine injury. Their
final prediction model includes four of
these factors: the presence of focal neu-
rologic deficit, presence of severe head
injury, cause of injury, and patient age.
These independent variables predict cer-
vical spine fracture with a high degree of
accuracy (area under the receiver operat-
ing characteristic curve ! 0.87) (3).

GENERAL FORM OF
REGRESSION MODELS

Regression models with multiple inde-
pendent variables have been constructed
for a variety of types of response vari-
ables, including continuous and discrete
variables. A large class of such models,
and the models used most commonly in
the medical literature, are the so-called
generalized linear models (4). In these
models, a linear relation is postulated to
exist between the independent variables
and the expected value of the dependent
variable (or some transformed value of
that expected value, such as the loga-
rithm). The observed value of the depen-
dent variable (response) is then the sum
of its expected value and an error term.
Multiple regression models for continu-
ous, binary, and other discrete depen-
dent variables are discussed in the follow-
ing sections.

MODELING OF CONTINUOUS
OUTCOME DATA

First, let us consider the situation in
which a continuous dependent variable

TABLE 1
Results of Multiple Linear Regression Analysis to Examine the Number of
Annual Procedures per FTE Radiologist in Diagnostic Radiology Groups

Variable Coefficient (") Standard Error* P Value

Intercept ("0) 10,403 2,154 .001
Academic status (X1) #2,238 1,123 .05
Annual hours per FTE (X2) 0.43 1.11 .70
Group size (FTE) (X3) #59.7 32.5 .07
Proportion of high productivity

procedures (X4)† #4,782 11,975 .69

Note.—Adapted and reprinted, with permission, from reference 1.
* Standard error of the estimated coefficient.
† High-productivity procedures included computed tomography (CT) and magnetic resonance

(MR) imaging, and interventional or angiographic procedures that required more mental effort,
stress, physical effort, and training than did other types of procedures.

306 ! Radiology ! November 2003 Gareen and Gatsonis

R
a

d
io

lo
gy



and a single independent variable are
available. Such would be the case, for ex-
ample, if in the practice pattern data dis-
cussed earlier, only the number of annual
procedures per radiologist as the depen-
dent variable and the radiology group
size as the independent variable were
considered. An earlier article in this series
(5) introduced the concept of a simple
linear regression model in which a linear
relation is assumed between the mean of
the response and the independent vari-
able. This model is represented as Yi ! "0 $
"1X1i $ ei, where Yi is the term represent-
ing the value of the dependent variable
for the ith case, X1i represents the value
of the independent random variable, "0
represents the intercept, "1 represents the
slope of the linear relation between the
mean of the dependent and the indepen-
dent variables, and ei denotes the random
error term, which has a mean of zero. The
expected value of the dependent variable
is then equal to "0 $ "1X1i, and the error
term is what is left unexplained by the
model.

When several independent variables
are considered, such as in the analysis of
the practice pattern data, multiple regres-
sion models are used. For example, as-
sume that in addition to X1, independent
variables X2, . . . , Xp are to be included in
the analysis. A linear multiple regression
model would then be written as

Yi ! "0 " "1X1i " "2X2i " · · · " "pXpi " ei.

The parameters "0, "1, . . . , "p from
this equation are referred to as the regres-
sion coefficients. To interpret the coeffi-
cients, again consider first the simple lin-
ear regression model. In this model, the
parameter "0 represents the intercept,
that is, the expected value of the depen-
dent variable when the value of the
independent variable is set to zero. The
parameter "1 represents the slope of the
regression line and measures the average
change in the dependent variable Y that
corresponds to an increase of one unit in
the independent variable X1.

In multiple regression, the relation be-
tween the dependent variable Y and the
independent variables X1, . . . , Xp is
somewhat more complex. The intercept
"0 represents the mean value of the re-
sponse when all of the independent vari-
ables are set to zero (that is, X1 ! 0, X2 !
0, . . . , Xp ! 0).

The slopes of the independent vari-
ables in the multiple linear regression
model are interpreted in the following
way. The slope "j of the jth independent
variable measures the change in the de-

pendent variable that corresponds to an
increase of one unit in Xj, if all other
independent variables are held fixed
(that is, the values of the other covariates
do not change). For example, the results
of a multiple linear regression analysis of
the practice pattern data reported by Sun-
shine and Burkhardt (1) are shown in
Table 1. From this survey of 87 radiology
groups, the dependent variable Y is the
number of procedures performed annu-
ally per full-time equivalent (FTE) radiol-
ogist. X1 is a dichotomous variable and
an indicator of academic status (coded 1
if the group is academic or 0 if the group
is non-academic). The remaining vari-
ables can be treated as approximately
continuous. X2 is the number of annual
hours worked by each FTE radiologist, X3
is the practice group size, and X4 is the
percentage of procedures that are high
productivity. Suppressing the notation
for cases, this model is written as

Y ! "0 " "1X1 " "2X2 " "3X3 " "4X4.

The terms can be substituted into this
model such that it is represented as the
following equation: Y ! "0 $ "1 (aca-
demic status) $ "2 (annual hours per
FTE) $ "3 (group size) $ "4 (percentage
high-productivity procedures).

The estimated coefficient of X1, the in-
dicator of academic status in the regres-
sion model, is #2,238 (Table 1). Because
X1 takes the values of 1 (academic group)
or 0 (non-academic group), this coeffi-
cient estimate implies that, if all other
independent variables remain fixed, aca-
demic groups would, on an annual basis,
be expected to have 2,238 procedures per
FTE radiologist less than those performed
in non-academic groups (the number de-
creases because the coefficient is a nega-
tive number).

The interpretation of coefficients for
continuous independent variables is sim-
ilar. For example, the model estimates
that, if all other independent variables
were fixed, an increase of one unit in
group size would correspond to an aver-
age decrease of 59.7 in the number of
procedures performed annually by each
FTE radiologist in a group practice. Thus,
if all other independent variables re-
mained fixed, and practice size increased
by five, the number of procedures per FTE
radiologist would be expected to decrease
by 5 % 59.7 ! 298.5, and so on. One
caveat in the interpretation of coeffi-
cients is that it is not always possible to
give them a direct physical interpreta-
tion. In this example, the intercept term
in the model does not have a direct in-

terpretation because it corresponds to a
setting of all the independent variables to
zero, which would be impossible to do. It
may also be argued that it is not possible
to fix some of the independent variables,
such as annual hours per FTE radiologist,
while allowing others, such as practice
size, to vary.

In Table 1, the standard error for each
coefficient provides a measure of the de-
gree of statistical uncertainty about the
estimate. The fitting of models to data
with a lot of scatter and small sample
sizes can lead to large standard errors for
the estimated coefficients. The standard
error can be used to construct a confi-
dence interval (CI) for the coefficient.
The P values in Table 1 correspond to
tests of the null hypothesis that a partic-
ular coefficient is equal to zero (that is,
the hypothesis of “no association” be-
tween the particular independent vari-
able and the dependent variable).

MODELING OF DICHOTOMOUS
OUTCOMES

Logistic regression is commonly used to
analyze dichotomous outcomes (depen-
dent variable). The independent vari-
ables in these models may be continuous,
categoric, or a combination of the two.
For simplicity, let us assume that the di-
chotomous dependent variable is coded
as 0 or 1. For example, a dichotomous
outcome of interest is whether each pa-
tient is dead or alive at the end of the
study observation period: Y ! 1 if a pa-
tient died during the follow-up interval
or Y ! 0 if a patient was alive at the end
of the follow-up interval.

In the logistic model, the expected
value of the response Y is equal to the
probability that Y ! 1, that is, the prob-
ability that an event (such as death) oc-
curs. The form of the model, however, is
more complex than that in the linear
model for continuous responses. In par-
ticular, the logit of the expected value,
rather than the expected value of Y, is
assumed to be a linear function of the
covariates. If p denotes the probability
that an event will occur, the logit of p is
defined as the logarithm of the odds, that
is, logit p ! log[p/(1 # p)].

Formally, the logistic model with mul-
tiple independent variables is written as

logit p &Y ! 1' ! "0 " "1X1 " · · · " "pXp,

or, equivalently, as

( p&Y ! 1') !
e"0$"1X1$· · ·$"pXp

1 " e"0$"1X1$· · ·$"pXp
.
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In the logistic model, "j measures the
change in log-odds for Y ! 1 that corre-
sponds to an increase of one unit in Xj, if
all of the other independent variables re-
main fixed. In contrast to the linear
model for continuous responses, the cor-
responding change in actual odds is mul-
tiplicative. Hence, exp("j) measures the
odds ratio (OR) that corresponds to an
increase of one unit in Xj. The OR is a
frequently used measure of association in
the epidemiology literature and is a com-
mon way of expressing the logistic re-
gression results (6). The OR measures the
odds of an outcome in the index group
compared with the odds of the same out-
come in the comparison group.

For example, in the study of Goodman
et al (2), Y indicates whether the patient
is dead (Y ! 1) or alive (Y ! 0) 3 months
after admission for pulmonary embolism
work-up. The primary independent vari-
able of interest, diagnostic method,
would be represented by X1. Potential
confounders (covariates) would be repre-
sented by X2, . . . , Xp. In Table 2, X2 is an
indicator that the patient was referred
from an ICU, X3 is an indicator that the
patient was older than 67 years, X4 is an
indicator of immobilization, and X5 is an
indicator of malignancy.

Substitution of these covariates into
this model would result in the following
representation: logit P(Y ! 1) ! "0 $ "1
(underwent CT: yes/no) $ "2 (ICU refer-
ral: yes/no) $ "3 (age older than 67 years:
yes/no) $ "4 (immobilization: yes/no) $
"5 (malignancy: yes/no).

For X1, the indicator of whether or not
helical CT was performed, the estimate of
the coefficient was 0.93. Therefore, the
estimated odds of death among patients
who were evaluated with helical CT com-
pared with that among those who were
evaluated with lung scintigraphy was
exp(0.93) ! 2.54. That is, if all other in-
dependent variables were fixed, the odds
of death within 90 days for patients who
underwent CT to diagnose pulmonary
embolism were 2.54 times as high as the
odds for patients who underwent lung
scintigraphy to diagnose pulmonary em-
bolism. Note that this value represents an
OR that was “adjusted” for the presence
of potential confounders. The “unad-
justed” estimate (computed from data
presented in reference 2) was 3.42. Be-
cause we cannot know the counterfactual
occurrence (the number of patients eval-
uated with CT who would have died had
they been evaluated with ventilation-
perfusion scintigraphy), we cannot say
whether the adjustment was successful,
and the OR is unbiased. That there is

some difference between the unadjusted
OR (3.42) and the adjusted OR (2.54) pro-
vides an indication that the potential
confounders controlled for in the analy-
sis may have been confounding the asso-
ciation between imaging modality and
death within 90 days. However, a strong
association remains between imaging
method and risk of death. A CI for the OR
can be obtained (6). In the example, the
95% CI for the OR is (1.36, 4.80).

The authors (2) report that “the pa-
tients in the CT imaging group had more
than twice the odds of dying within 90
days as those in the [ventilation-perfu-
sion] scintigraphy group.” They also
noted that “the prevalence of clinically
apparent pulmonary embolism after a
negative helical CT scan was low (1.0%)
and minimally different from that after a
normal ventilation-perfusion scan (0%)”
(2). Part of this association may be due to
residual confounding in the analysis. In
particular, it is likely that there was con-
founding by indication in this sample.
That is, patients with a higher likelihood
of dying from pulmonary embolism were
referred selectively for CT. Other more
sophisticated statistical techniques may
be needed to adjust for this type of con-
founding (7).

In multiple logistic regression models,
the intercept "0 measures the baseline
log-odds for Y ! 1, that is, the log-odds
for Y ! 1 for cases in which all indepen-
dent variables have a value of zero. In the
pulmonary embolism example, this would
correspond to the subset of patients with
all independent variables set to “no,”
that is, patients who did not undergo CT,
were not referred from the ICU, were 67
years old or younger, were not immobi-
lized, and did not have a malignancy.
Note that if all covariates are centered by
means of subtraction of the average pop-
ulation value, then "0 measures the log-
odds for Y ! 1 for an “average” case.

POLYNOMIAL TERMS

The models discussed earlier assumed a
linear relation between the independent
variables and the expected value of the
dependent variable. If the relation is
thought to follow a non-linear form, al-
ternative models can be considered that
involve transformations of the depen-
dent and/or independent variables. Herein,
we discuss transformations of the inde-
pendent variables. In a simple model
with a continuous dependent variable
and a continuous independent variable,
if the slope of the relation appears to
change with the value of the indepen-
dent variable X, then a polynomial in X
may be used instead of a straight line.
With the example from Sunshine and
Burkhardt (Table 1), if the association be-
tween the average number of procedures
per radiologist and group size was not
linear but seemed to be parabolic in na-
ture, with extremes in each tail, then in-
clusion of a term X3

2 might more fully
describe the observed data. The addition
of higher-order (ie, X3, X4) terms may
also enhance model fit (8). In addition to
polynomial functions, models with other
non-linear functions of the independent
variables are available (8).

MODEL INTERPRETATION:
INTERACTIONS

In both linear and logistic regression, the
association between the dependent vari-
able and one of the independent vari-
ables may vary across values of another
independent variable. To graphically de-
pict this concept, the example from the
Sunshine and Burkhardt article (1) is
used. The relation between the number
of procedures per FTE radiologist and
group size for academic and nonaca-
demic groups with no interaction terms
is shown in the Figure, part a. Note that

TABLE 2
Results of Multiple Logistic Regression Analysis to Examine Death within
90 Days of Evaluation for Pulmonary Embolism

Variable
Regression

Coefficient (") SD
Odds
Ratio 95% CI P Value

Underwent CT (X1) 0.93 0.32 2.54 1.36, 4.80 .004
Referral from intensive care

unit (X2) 1.78 0.32 5.93 3.09, 11.0 .001
Age older than 67 years (X3) 0.75 0.34 2.12 1.12, 4.14 .024
Immobilization (X4) 1.26 0.39 3.52 1.59, 7.58 .002
Malignancy (X5) 0.87 0.34 2.39 1.21, 4.63 .012

Note.—Adapted and reprinted, with permission, from reference 2.
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the two lines, which correspond to aca-
demic and nonacademic group status, are
parallel. Now, suppose that the authors
want to examine whether, in fact, the
two lines are parallel or not. In other
words, they want to know whether the
relation between the number of proce-
dures and group size depends on aca-
demic group status. To examine this
question, the authors would consider a
model with an interaction term between
academic group status and group size.
The Figure, part b, shows how statistical
interaction with another variable (aca-
demic status) might influence the rela-
tion between the number of procedures
and group size.

Another example is drawn from the ar-
ticle by Mercado et al (9). In this article, the
authors examine whether placement of a
stent influences the association between
post-procedural minimal lumen diameter
and restenosis (Table 3). Questions of this

type can be addressed by including appro-
priate “interaction” terms in the regression
model. In the restenosis data, a model with
an interaction between post-procedural lu-
men diameter and stent use can be written
as follows:

logit p&Y ! 1' ! "0 " "1X1 " "2X2 " "3X3

" "4X4 " "5X5 " "6X1 ! X3,

where Y ! 1 if restenosis occurs and 0
otherwise, X1 ! stent use, X2 ! lesion
length, X3 ! post-procedural maximum
lumen diameter (PMLD), X4 ! previous
coronary artery bypass graft (CABG), and
X5 ! diabetes mellitus. X1 ! X3 is a (mul-
tiplicative) interaction term between X1
and X3, in which ! indicates that X1 is
multiplied by X3. With the addition of
the interaction term, the model would be
represented as follows: logit P(Y ! 1) !
"0 $ "1 (stent use) $ "2 (lesion length) $
"3 (PMLD) $ "4 (previous CABG) $ "5

(diabetes mellitus) $ "6 (stent use !
PMLD).

The presence of a significant interac-
tion suggests that the effect of X1 de-
pends on the actual level of X3 and con-
versely. For example, the OR for the
maximal diameter size would be exp("3
$ "6X1). Thus, for patients who did not
receive a stent, an increase of one unit in
the maximal diameter would multiply
the odds of restenosis by exp("3). How-
ever, for patients who received a stent,
the odds of restenosis would be multi-
plied by exp("3 $ "6). Hence, in the pres-
ence of interactions, the main effects cannot
be interpreted by themselves (4,6,7).

OTHER FORMS OF MULTIPLE
REGRESSION MODELING

Dependent variables that are neither
continuous nor dichotomous may also
be analyzed by means of specialized mul-
tiple regression techniques. Most com-
monly seen in the radiology literature are
ordinal categoric outcomes. For example,
in receiver operating characteristic stud-
ies, the radiologist’s degree of suspicion
about the presence of an abnormality is
often elicited on the five-point ordinal
categoric scale, in which 1 ! definitely
no abnormality present, 2 ! probably no
abnormality present, 3 ! equivocal, 4 !
probably abnormality present, and 5 !
definitely abnormality present. Ordinal
regression models are available for the
study of ordinal categoric outcomes.
Such models can be used to fit receiver
operating characteristic curves and to es-
timate the effect of covariates such as
patient, physician, or other factors. Ex-
amples and further discussion of ordinal

TABLE 3
Results of Multiple Regression Analysis to Examine Coronary Restenosis

Variable*
Odds
Ratio 95% CI P Value

Intercept coefficient ("0) ! 0.12 . . . . . . . . .
Stent use (X1) 0.83 0.72, 0.97 .0193
Lesion length (X2) 1.05 1.04, 1.06 *.001
PMLD (X3) 0.53 0.46, 0.61 *.001
Previous CABG (X4) 0.69 0.53, 0.9 .006
Diabetes mellitus (X5) 1.33 1.16, 1.54 *.001
Stent use ! PMLD (X6)* 0.34 0.31, 0.39 .002

Source.—Reference 9.
Note.—Table presents results from a multiple logistic regression analysis to examine coronary

restenosis as a function of medical treatment and other selected patient characteristics. CABG !
coronary artery bypass graft, PMLD ! post-procedural maximum lumen diameter.

* In this term, the ! indicates that this is an interaction term in which stent use is multiplied by
PMLD.

Examples of fitted regression lines of the relation between the number of procedures per FTE radiologist and group size for academic and
nonacademic groups, based on the analyses presented by Sunshine and Burkhadrt (1), show (a) no statistical interaction and (b) statistical
interaction.
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regression are available in articles by
Tosteson and Begg (10) and Toledano
and Gatsonis (11).

RECENTERING AND RESCALING
OF VARIABLES

As noted earlier, in some cases an inde-
pendent variable cannot possibly take
the value of 0, thus making it difficult to
interpret the intercept of a regression
model. For example, gestational age and
age at menarche cannot be meaningfully
set to zero. This difficulty can be ad-
dressed by subtracting some value from
the independent variable before it is used
in the model. In practice, the average
value of the independent variable is often
used, and the “centered” form of the vari-
able now represents the deviation from
that average. When independent vari-
ables are centered at their averages, the
intercept represents the expected re-
sponse for an “average” case, that is, a
case in which all independent variables
have been set to their average values.

The rescaling of variables may also en-
hance the interpretability of the model.
Often the units in which data are pre-
sented are not those of clinical interest.
By rescaling variables, each unit of in-
crease may represent either a more clini-
cally understandable or a more meaning-
ful difference. For example, if gestational
age is measured in days, then it may be
rescaled by dividing the value for each
observation by seven, which yields gesta-
tional age measured in weeks. In this
case, "1, the regression coefficient, would
then represent the difference in risk per
unit increase in gestational age in weeks
rather than in days.

MODEL SELECTION

A detailed discussion of model selection
is beyond the scope of this article. We
note, however, that selection of the inde-

pendent variables to include in a model
is based on both subject matter and for-
mal statistical considerations. Generally,
certain independent variables will be in-
cluded in the model even if they are not
significantly associated with the response
because they are known a priori to be
related to both the exposure and the out-
come of interest or to be potential con-
founders of the association of interest.
Additional independent variables of in-
terest are then evaluated for their contri-
bution to an explanation of the observed
variation. Models are sometimes built in
a forward “stepwise” fashion in which
new independent variables are added in a
systematic manner, with additional terms
being entered only if their contribution
to the model is above a certain threshold.
Alternatively, “backward elimination”
may be used, starting with all potential
independent variables of interest and
then sequentially deleting covariates if
their contribution to the model is below
a fixed threshold. The validity and utility
of stepwise procedures for model selec-
tion is a matter of debate and disagree-
ment in the statistics literature (6).

In addition to the selection of perti-
nent independent variables for inclusion
in the model, it is essential to ensure that
the form of the model is appropriate. A
variety of regression diagnostics are avail-
able to help the analyst determine the
adequacy of the postulated form of the
model. Such diagnostics generally focus
on examination of the residuals, which
are defined as the difference between the
observed and the predicted values of the
response. The analyst then examines the
residuals to detect the presence of pat-
terns that suggest poor model fit (4,8).

CONCLUSION

Multiple regression models offer great
utility to radiologists. These models assist
radiologists in the examination of multi-
factorial etiologies, adjustment for multi-

ple confounding factors, and develop-
ment of predictions of future outcomes.
These models are adaptable to continu-
ous, dichotomous, and other types of
data, and their use may enhance the ra-
diologist’s understanding of complex im-
aging utilization and clinical issues.
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Special Topics III: Bias1

Researchers, manuscript reviewers, and journal readers should be aware of the many
potential sources of bias in radiologic studies. This article is a review of the common
biases that occur in selecting patient and reader samples, choosing and applying a
reference standard, performing and interpreting diagnostic examinations, and an-
alyzing diagnostic test results. Potential implications of various biases are discussed,
and practical approaches to eliminating or minimizing them are presented.
© RSNA, 2003

There are many potential sources of bias in radiologic studies. For those of us who perform
studies, review manuscripts, or read the literature, it is important to be aware of these
biases, and for the investigators in studies, it is important to know how to avoid or
minimize bias. The term bias refers to the situation in which measurements from a study
(eg, measurement of a test’s sensitivity and specificity) do not correspond to the values
that we would obtain if we performed the test in all patients in the relevant population. Of
course, we can never perform the test in all patients in the population, so it is imperative
that we do our best to design studies without bias.

Bias can occur in selecting the patients, images, and/or readers (ie, radiologists) for a
study, in choosing and applying the reference-standard procedure, in performing and
interpreting the tests, and in analyzing the results. Many of the biases encountered in
radiologic studies have been given names, but there are many unnamed biases that we can
identify and avoid by using common sense.

It is best to recognize the potential sources of bias while in the process of designing a
study. Then, solutions to the bias problem, or at least ways to minimize the effect of the
bias, can be implemented in the study. Note that having a large sample size may reduce the
variability (ie, random error) (Table) of our estimates, but it is never a solution to bias (ie,
systematic error).

BIAS IN SELECTING THE PATIENT SAMPLE

The objectives of a study determine the type of patients that we recruit. If we have a new
test and want to determine if it has any diagnostic value, then we might select a group of
patients with clinically evident disease and a group of volunteers who do not have the
disease for comparison. Sox et al (3) refer to the patients in such studies as “the sickest of
the sick” and “the wellest of the well.” If the test does not yield different results for these
two groups, then it probably does not have any diagnostic value. In these patients, we
cannot measure, without bias, other variables such as the test’s sensitivity and specificity
or the differences in contrast material uptake. The reason is that our study sample is
missing important types of patients—for example, patients with latent disease and control
patients with confounding illnesses. Variables such as sensitivity and specificity will most
likely be different for these patients.

Selection bias occurs when external factors influence the composition of the sample to
the extent that the sample does not represent the population (eg, in terms of patient types,
the frequency of the patient types, or both). Spectrum bias (4) is a type of selection bias;
it exists when the sample is missing important subgroups. A classic example of spectrum
bias is that encountered in screening mammography studies to compare the accuracy of
full-field digital mammography with that of conventional mammography. A very large
sample size is required to perform a comparison of these two modalities because the
prevalence of breast cancer in screening populations is very low. One strategy to reduce the
sample size is to consider women who have positive conventional mammography results.
These women return for biopsy, and at that time, full-field digital mammography can be
performed. However, there is a serious problem with this strategy: The patients with
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negative conventional mammography
results (true- and false-negative cases)
have been selected out. The consequence
is that the sensitivity of conventional
mammography will be greatly overesti-
mated—making full-field digital mam-
mography seem inferior—and the speci-
ficity of conventional mammography
will be greatly underestimated—making
full-field digital mammography seem su-
perior.

Once a new diagnostic test is shown to
be capable of yielding different results for
“the sickest of the sick” and “the wellest
of the well,” it is time to challenge the
test. We challenge a test by performing it
in study patients for whom making a di-
agnosis is difficult (4). From the results of
these studies, we can determine if the test
will be reliable in a clinical population
that includes both patients for whom it is
easy and patients for whom it is difficult
to make a diagnosis. However, because of
spectrum bias, we still cannot measure,
without bias, other variables such as the
test’s sensitivity and specificity.

Suppose now that we have a well-es-
tablished test that we know from previ-
ous studies is reliable even for difficult-
to-diagnose cases. We want to measure,
for example, the test’s sensitivity and
specificity for a particular population of
patients. Ideally, we would select our
study patients by taking a random sam-
ple from the population of patients who
present to their primary physician with a
certain set of signs and symptoms. In
fact, a random sample is the basis of the
interpretation of P values calculated in
statistical analyses. We then perform the
well-established test in these patients and
measure the test’s sensitivity and speci-
ficity. These measurements will be gener-
alizable (Table) to similar patients who
present to their primary physicians with
the same signs and symptoms.

Sometimes this ideal study design is
not workable. Alternatively, for this well-
established test, suppose we select our
study patients from a population of indi-
viduals who are referred to the radiology
department for the test. Such a sample is
called a referred or convenience sample.
These patients have been selected to un-
dergo the test. Other patients from the
population may not have been referred
for the test, or they may have been re-
ferred at a different rate. It is usually im-
possible to determine the factors that
influenced the evaluating physicians’ re-
ferral patterns. Thus, the measurements
taken from a referred sample are general-
izable only to the referring physicians in

the study since other physicians will se-
lect different patients.

If we must use a referred sample, for
example, to minimize costs, then we
should at least carefully collect and
record important patient characteris-
tics—important in the sense that the
measurements taken in the study might
vary according to these characteristics—
and the relative frequency of these char-
acteristics. We should report the mea-
surements obtained in patients with
various characteristics (eg, report the
test’s sensitivity and specificity for pa-
tients with and those without symp-
toms). This will allow others to compare
the characteristics of their patient popu-
lation with the characteristics of the
study sample to determine how general-
izable the study results are to their radi-
ology practice.

BIAS IN SELECTING THE
READER SAMPLE

In some studies a sample of readers is
needed. For example, when studying the
diagnostic accuracy of tests such as
chest radiography, computed tomogra-
phy (CT), magnetic resonance (MR) an-
giography, and mammography, we must
recognize that accuracy is a function of
both the imaging unit and the reader
who uses it (5). Since readers differ in
cognitive and perceptual abilities, it is
important to include multiple readers in
such studies and to make sure that these
readers represent the population of radi-
ologists in whom you are interested. Too

often radiologic research is performed at
tertiary care hospitals by radiology sub-
specialists who are experts in their given
specialties. Thus, the reported estimates
of diagnostic test accuracy may be high,
but they might not be generalizable to
community hospitals where general radi-
ologists practice.

It can be challenging to obtain a truly
representative sample of readers for stud-
ies. The problem is illustrated in the
mammography study performed by
Beam et al (6). They identified all of the
American College of Radiology–accred-
ited mammography centers in the
United States. There were 4,611 such cen-
ters in the United States at the time of the
study. Then they randomly sampled 125
of the 4,611 centers and mailed letters to
these centers to assess their willingness to
participate. Only 50 centers (40%) agreed
to take part in the study. One hundred
eight radiologists from these 50 centers
actually interpreted images for the study.
There was a clear potential for bias be-
cause the highly motivated centers and
readers may have been more likely to vol-
unteer, and these centers and readers
may not have been representative of the
population. It is unclear how to over-
come this type of bias.

BIAS IN CHOOSING AND
APPLYING THE
REFERENCE-STANDARD TEST

This section is focused on studies in
which the objective is to measure the
accuracy (ie, sensitivity, specificity, and

Definition of Common Terms

Term Definition

Random error Variation in measurements due to inherent differences between
patients (or readers) and natural fluctuations within a patient
(or reader)

Systematic error Pattern of variation in measurements attributable to an external
factor

Generalizeable Situation in which a study’s results can be assumed to represent
and/or predict the situation at another clinical center (1)

Operational standards Set of definitions and/or rules used to conduct a research study
(eg, definitions of presence and absence of disease)

Misclassification Incorrect diagnosis; examples are false-positive cases (ie, disease-
free patients classified as having disease) and false-negative cases
(ie, patients with disease classified as being disease free)

Blinding Process of withholding information (eg, results of the reference
standard procedure) from a technician and/or a reader for the
study purpose of determining the value (eg, accuracy) of a test
per se

Randomize Process of assigning patients (or images) to groups or positions in a
list (eg, a list of images to be read in a study) by using various
methods that allow each patient (or image) to have a known
(usually equal) chance of being assigned to a group or position,
but the group or position cannot be predicted (2)
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receiver operating characteristic curve) or
comparative accuracy of tests. For these
studies, a reference-standard, or “gold
standard,” procedure is needed to deter-
mine the true disease status of the pa-
tients. A reference-standard procedure is
a test or procedure whose results tell us,
with nearly 100% accuracy, the true dis-
ease status of patients. Choosing a refer-
ence-standard procedure and applying it
equitably is often the most challenging
part of designing a study.

Imperfect standard bias occurs when
the reference-standard procedure yields
results that are not nearly 100% accurate.
An example would be a study of the ac-
curacy of head CT for the diagnosis of
multiple sclerosis. If MR imaging were
used as the reference-standard test, then
the measures of the accuracy of CT would
be biased (ie, probably too low in value)
(7) because the accuracy of MR imaging
in the diagnosis of multiple sclerosis is
not near 100%.

Some might argue that there is no such
thing as a “gold” standard. Even patho-
logic analysis results are not 100% accu-
rate because, like radiology, pathology is
an interpretative discipline. For all stud-
ies it is important to have operational
standards (Table) that take into account
the condition being studied, the objec-
tives of the study, and the potential ef-
fects of any bias. Some common sense is
needed as well (8).

There are various solutions to imper-
fect standard bias. First, we can choose a
better reference-standard procedure, if
one exists. For the multiple sclerosis
study, we could follow up the patients for
several months or years to establish a
clinical diagnosis and use the follow-up
findings as the reference standard for
comparison with the results of CT. Some-
times, however, there is no reference-
standard procedure. For example, sup-
pose we want to estimate the accuracy of
a new test for identifying the location in
the brain that is responsible for epileptic
seizures. There is no reference-standard
test in this case. However, as an alterna-
tive to measuring the test’s accuracy, we
could frame the problem in terms of the
clinical outcome (7): We could compare
the test results with the patients’ seizure
status after nerve stimulation to various
locations and report the strength of this
relationship. Such analysis can yield use-
ful clinical information, even when the
test’s accuracy cannot be adequately
evaluated.

Another solution is to use an expert
panel to establish a working diagnosis.
Thornbury et al (9) formed an expert

panel to determine the diagnoses for pa-
tients who underwent MR imaging and
CT for acute low back pain. The panel
was given the patients’ medical histories,
physical examination results, laboratory
findings, treatment results, and fol-
low-up information to decide whether a
herniated disk was present. The determi-
nations of the expert panel regarding the
patients’ true diagnoses were used as the
reference standards with which the MR
imaging and CT results were compared.
Note that the expert panel was not given
the results of MR imaging or CT. This was
planned to avoid incorporation bias,
which occurs when the results of the di-
agnostic test(s) under evaluation are in-
corporated—in full or in part—into the
evidence used to establish the definitive
diagnosis (4).

A fourth solution to imperfect standard
bias is to apply one of several statistical
corrections (10). To apply these correc-
tions, one must make some assumptions
about the imperfect reference standard (eg,
that its sensitivity and specificity are
known) and/or the relationship between
the results of the test being assessed and
the results of the reference-standard test
(eg, that the test in question and the refer-
ence-standard test make errors indepen-
dently of one another). There is continuing
research of new statistical methods for ad-
dressing imperfect standard bias.

In some studies, a reference-standard
procedure exists, but it cannot be per-
formed in all of the study patients, usu-
ally owing to ethical reasons. An example
of such bias is that which may be en-
countered in a study to assess the accu-
racy of lung cancer screening with CT. If
a patient has negative CT results, then we
cannot perform biopsy or surgery to de-
termine his or her true disease status.
Verification bias occurs when patients
with positive or negative test results are
preferentially referred for the reference-
standard procedure and then the sensi-
tivity and specificity are based only on
those patients who underwent the refer-
ence-standard test (11). This bias is coun-
terintuitive in that investigators usually
believe that including only the patients
for whom there was rigorous verification
of the presence or absence of disease will
make their study design ideal (12). The
opposite is true, however: Studies in
which the most stringent verification of
disease status is required and the cases
with less definitive confirmation are dis-
carded often yield the most biased esti-
mates of accuracy (11,13).

One solution to verification bias is to
design the study so that the diagnostic

test results will not be used to determine
which patients will undergo disease sta-
tus verification. Rather, the study pa-
tients can be selected to undergo the ref-
erence-standard procedure on the basis
of their signs, symptoms, and other test
results—not the results of the test(s) eval-
uated in the study. This is not always
possible because the test(s) under evalua-
tion may be the usual clinical test(s) used
to make diagnoses and manage the treat-
ment of these patients.

Another solution is to use different ref-
erence-standard procedure(s) for differ-
ent patients. For example, in evaluating
the accuracy of CT for lung cancer
screening, some patients may undergo
biopsy and surgery and others can be fol-
lowed up clinically and radiologically for
a specified period (eg, 2 years) to detect
wrongly diagnosed cases (Table). We can-
not simply assume that patients with
negative test results are disease free; this
assumption can lead to a serious overes-
timation of test specificity (11).

A third solution to verification bias is
to apply a statistical correction to the es-
timates of accuracy. A number of correc-
tion methods exist (14). Most of these
methods are based on the assumption
that the decision to verify a patient’s di-
agnosis—that is, to refer the patient for
further diagnostic work-up, including
the reference-standard test used in the
study—is a conscious one and thus is
based on visible factors, such as the test
result and the patient’s signs and symp-
toms. To apply any of the correction
methods, it is essential that we record the
results of all patients who undergo the
test being assessed—not just those of pa-
tients who undergo the evaluated test
and the reference-standard procedure.

BIAS IN PERFORMING AND
INTERPRETING TESTS

Tests that are being evaluated in a study
must be performed and interpreted with-
out knowledge of the results of compet-
ing tests and, when applicable, without
knowledge of the results of the reference-
standard procedure. If a reference-stan-
dard procedure is used in a study, it must
be performed and interpreted without
knowledge of the results of the diagnostic
test(s) being evaluated.

Review bias (4) occurs when a diagnos-
tic test, or the reference-standard test, is
performed or interpreted without proper
blinding (Table). Consider as an example
a study to compare the capability of CT
and ultrasonography (US) to depict tu-
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mors. When performing US, the techni-
cian and radiologist should not be aware
of the CT findings because the technician
might search with more scrutiny in loca-
tions where a tumor was found at CT and
the radiologist may have a tendency to
“overread” a suspicious area when he or
she knows that the CT reader interpreted
it to be a tumor. The simplest way to
avoid this type of bias is to “blind” both
the technician and the reader to the re-
sults of the other tests.

In retrospective studies in which the
tests have already been performed and
interpreted, it is critical that we scrutinize
the usual clinical practice in search of
review bias. For example, suppose we are
reviewing the test findings of all patients
who underwent CT and pulmonary an-
giography for detection of pulmonary
emboli. We may find that angiography
was almost always performed after CT,
and we may suspect that the angiogram
was obtained and interpreted with
knowledge of the CT findings. For such a
study, it may be possible to reinterpret
the angiogram while blinded to the CT
results. However, one cannot perform
the angiographic examination again
while blinded to the CT results. In these
situations we must be aware that the po-
tential for bias exists and interpret the
study findings with the appropriate level
of caution.

When two tests—for example, tests A
and B—are performed in the same pa-
tient and the images are interpreted by
the same reader, the images read last—for
example, the test B images—will tend to
be interpreted more accurately than the
images read first—that is, the test A im-
ages—if the reader retains any informa-
tion (15). This situation is called reading-
order bias, and it can (a) negate a real
difference (ie, if test A is really superior to
test B), (b) inflate the true difference (ie,
if test B is really superior to test A), or
(c) create a difference when no true dif-
ference exists.

The simplest way to reduce or elimi-
nate reading-order bias is to vary the or-
der in which the test findings are inter-
preted (15). For example, suppose 50
patients underwent both test A and test
B. The reader could first interpret the re-
sults of test A for half of the patients—let
us call them group 1. Next, the reader
would interpret the results of test B for
the second half of the patients—let us
call them group 2. After a sufficient time
lag, the reader would interpret the test B
results for group 1 and then the test A
results for group 2. This way, the effect of
reading-order bias would be cancelled

out, because although the test A results
would be read first for half of the pa-
tients, the test B results also would be
read first for half of the patients.

Note that patients would have to be
randomized (Table) to the two groups
and the images obtained in the two
groups would need to be presented to the
readers in random order. The rationale
for this protocol is that readers some-
times remember the first (and even sec-
ond and last) case in a reading session, so
by randomizing patients we reduce the
effect of any retained information.

An additional way to reduce the effect
of retained information is to allow a suf-
ficient time lag between the first and sub-
sequent readings of images in the same
case. No standard time is appropriate for
all studies. Rather, the duration of the
time lag should depend on the complex-
ity of the readings and the volume of the
study cases and similar clinical cases that
the reader is expected to interpret. For
example, if the study cases are those from
screening examinations and the reader in
his or her typical clinical practice inter-
prets the results of many screening exam-
inations, then a short time lag (ie, a few
days) is probably sufficient. In contrast, if
the study cases are difficult and complex
to interpret and thus a great deal of time
is required to determine the diagnosis,
and/or if the reader does not typically
interpret the types of cases included in
the study, then a long time lag (ie, several
months) is needed to minimize the re-
tained information.

One last bias that I will discuss in this
section occurs when tests are interpreted
in an artificial environment. Intuitively,
in an experimental setting, we might ex-
pect readers to interpret cases with more
care because they know that their perfor-
mance is being measured. Egglin and
Feinstein (16) addressed another issue
that affects reader performance. They
performed a study to assess the effect that
disease prevalence has on test interpreta-
tion. They assembled a test set of pulmo-
nary arteriograms with a depicted pulmo-
nary embolism prevalence of 33% and
embedded this set into two larger groups
of arteriograms such that group A had an
overall prevalence rate of 60% and group
B an overall prevalence rate of 20%. After
blinded randomized reviews by six read-
ers, they concluded that readers’ accura-
cies differ depending on the context and
often improve when the disease preva-
lence is higher. Egglin and Feinstein (16)
defined context bias as the bias in accu-
racy measurements that occurs when the
disease prevalence in the sample differs

greatly from the prevalence in the clini-
cal population. They suggested that in-
vestigators use a sample with a disease
prevalence similar to that in the clini-
cally relevant population.

BIAS IN ANALYZING TEST
RESULTS

Some tests yield uninterpretable results
(17). Causes of uninterpretable results in-
clude insufficient cell specimens from
needle biopsy, abdominal gas interfering
with pelvic US imaging, and dense breast
tissue at mammography screening. In an-
alyzing the results of a study it is critical
not to omit these cases. Rather, we must
report the frequency and causes of such
cases. When comparing tests, the fre-
quencies of uninterpretable results from
the tests should be compared. Poynard et
al (18) compared three tests for diagnos-
ing extrahepatic cholestasis and found
that the clinical usefulness of the three
tests was strongly influenced by the fre-
quencies of uninterpretable results of the
different examinations.

Another common problem occurs when
some study forms are missing or parts of
the forms are incomplete or filled out in-
correctly. Response bias occurs when we
include just the complete data in our anal-
ysis and ignore the missing data. The prob-
lem is that there is often a pattern to the
missing data—for example, patients who
are found to be disease free tend to be fol-
lowed up with less scrutiny compared with
patients who have disease, so data on, for
example, patient satisfaction are mostly
from patients with disease. However, the
results might be different for disease-free
patients.

Although there are statistical methods
to account for data that are missing not
at random (19), it is best to minimize the
frequency of missing data by properly
training the staff who complete the
forms and including mechanisms to col-
lect the incomplete data (eg, multiple
telephone and mail messages to nonre-
sponders, cross checks in other databases
for information on medical utilization
and major outcomes).

CONCLUSION

Sources of bias are everywhere, making it
very challenging to design and interpret
studies. Researchers should implement
ways to avoid bias or to minimize its ef-
fect while still in the planning phase of
their study. We all should be aware of
common biases so that we are able to
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make informed judgments about the
generalizability of study results to our
clinical practice.
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Proportions, Odds, and Risk1

Perhaps the most common and familiar way that the results of medical research and
epidemiologic investigations are summarized is in a table of counts. Numbers of
subjects with and without the outcome of interest are listed for each treatment or
risk factor group. By using the study sample data thus tabulated, investigators
quantify the association between treatment or risk factor and outcome. Three
simple statistical calculations are used for this purpose: difference in proportions,
relative risk, and odds ratio. The appropriate use of these statistics to estimate the
association between treatment or risk factor and outcome in the relevant population
depends on the design of the research. Herein, the enumeration of proportions,
odds ratios, and risks and the relationships between them are demonstrated, along
with guidelines for use and interpretation of these statistics appropriate to the type
of study that gives rise to the data.
© RSNA, 2004

In a previous article in this series (1), the 2 " 2 contingency table was introduced as a way
of organizing data from a study of diagnostic test performance. Applegate et al (2) have
previously described analysis of nominal and ordinal data as counts and medians. Binary
variables are a special case of nominal data where there are only two possible levels (eg,
yes/no, true/false). Data in two binary variables arise from a variety of research methods
that include cross-sectional, case-control, cohort, and experimental designs. In this article,
we will describe three ways to quantify the strength of the relationship between two binary
variables: difference of proportions, relative risk (RR), and odds ratio (OR). Appropriate use
of these statistics depends on the type of data to be analyzed and the research study design.

Correct interpretation of the difference of proportions, the RR, and the OR is key to the
understanding of published research results. Misuse or misinterpretation of them can lead
to errors in medical decision making and may even have adverse public policy implica-
tions. An example can be found in an article by Schulman et al (3) published in the New
England Journal of Medicine about the effects of race and sex on physician referrals for
cardiac catheterization. Results of this study of Schulman et al received extensive media
coverage about the findings that blacks and women were referred less often than white
men for cardiac catheterization. In a follow-up article, Schwartz et al (4) showed how the
magnitude of the findings of Schulman et al was overstated, chiefly because of confusion
among OR, RR, and probability. The resulting controversy underscores the importance of
understanding the nuances of these statistical measures.

Our purpose is to show how a 2 " 2 contingency table summarizes results of several
common types of biomedical research. We will describe the four basic study designs that
give rise to such data and provide an example of each one from literature related to
radiology. The appropriate use of difference in proportion, RR, and OR depends on the
study design used to generate the data. A key concept to be developed about using odds to
estimate risk is that the relationship between OR and RR depends on outcome frequency.
Both graphic and computational correction of OR to estimate RR will be shown. With rare
diseases, even a corrected RR estimate may overstate the effect of a risk factor or treatment.
Use of difference in proportions (expressed as attributable risk) may give a better picture of
societal impact. Finally, we introduce the concept of confounding by factors extraneous to
the research question that may lead to inaccurate or contradictory results.

2 ! 2 CONTINGENCY TABLES

Let X and Y denote two binary variables that each have only two possible levels. Another
term for binary is dichotomous. Results are most often presented as counts of observations
at each level. The relationship between X and Y can be displayed in a 2 " 2 contingency
table. Another name for a contingency table is a cross-classification table. A 2 " 2
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contingency table consists of four cells:
the cell in the first row and first column
(cell 1–1), the cell in the first row and
second column (cell 1–2), the cell in the
second row and first column (cell 2–1),
and the cell in the second row and sec-
ond column (cell 2–2). Commonly used
symbols for the cell contents include n
with subscripts, p with subscripts, and
the letters a–d. The n11, n12, n21, and n22
notation refers to the number of subjects
observed in the corresponding cells. In
general, “nij” refers to the number of ob-
servations in the ith row (i ! 1, 2) and jth
column (j ! 1, 2). The total number of
observations will be denoted by n (ie, n !
n11 # n12# n21 # n22). The p11, p12, p21,
and p22 notation refers to the proportion
of subjects observed in each cell. In gen-
eral, “pij” refers to the proportion of ob-
servations in the ith row (i ! 1, 2) and jth
column (j ! 1, 2). Note that pij ! nij/n.
For simplicity, many authors use the let-
ters a–d to label the four cells as follows:
a ! cell 1–1, b ! cell 1–2, c ! cell 2–1, and
d ! cell 2–2. We will use the a–d notation
in equations that follow. Table 1 shows
the general layout of a 2 " 2 contingency
table with symbolic labels for each cell
and common row and column assign-
ments for data from medical studies.

In many contingency tables, one vari-
able is a response (outcome or dependent
variable) and the other is an explanatory
(independent) variable. In medical stud-
ies, the explanatory variable (X in the
rows) is often a risk or a protective factor
and the response (Y in the columns) is a
disease state. The distribution of ob-
served data in a 2 " 2 table indicates the
strength of relationship between the ex-
planatory and the response variables. Fig-
ure 1 illustrates possible patterns of ob-
served data. The solid circle represents a
cell containing numerous observations.
Intuitively, we would expect that if the X
and Y variables are associated, then pat-
tern A or B would be observed. Patterns
C, D, and E suggest that X and Y are
independent of each other (ie, there is no
relationship between them).

STUDY DESIGNS THAT YIELD
2 ! 2 TABLES

The statistical methods used to analyze
research data depend on how the study
was conducted. There are four types of
designs in which two-by-two tables may
be used to organize study data: case-con-
trol, cohort, cross sectional, and experi-
mental. The first three designs are often
called observational to distinguish them

from experimental studies; of the exper-
imental studies, the controlled clinical
trial is the most familiar. The 2 " 2 tables
that result from the four designs may
look similar to each other. The outcome
is typically recorded in columns, and the
explanatory variable is listed in the rows.
The $2 statistic may be calculated and
used to test the null hypotheses of inde-
pendence between row and column vari-
ables for all four types of studies. These
methods are described in a previous arti-
cle in this series (2). Table 2 summarizes
the features of the four types of designs in
which 2 " 2 tables are used to organize
study data. Each is briefly described next,
with a radiology-related example pro-
vided for illustration. The ordering of the
study designs in the following para-
graphs reflects, in general, the strength
(ie, weaker to stronger) of evidence for
causation obtained from each one. The
advantages and disadvantages of the dif-
ferent designs and situations where each
is most appropriate are beyond the scope
of this article, and the reader is encour-
aged to seek additional information in
biostatistics, research design, or clinical
epidemiology reference books (5–7).

The statistics used to quantify the rela-
tionship between variables (ie, the effect
size) are detailed and the examples of
study designs are summarized in Table 3.
These will be briefly defined now. The
difference in proportion is the difference
in the fraction of subjects who have the
outcome between the two levels of the
explanatory variable. The RR is the ratio

of proportion (ie, risk) of subjects who
have the outcome between different lev-
els of the explanatory variable. The OR is
the ratio of the odds that a subject will
have the outcome between the two levels
of the explanatory variable. Each of these
statistics has an associated standard error
that can be calculated and used to form
CIs around the estimate at any chosen
level of precision. The calculation of CIs
and their use for inference testing are
described in a previous article in this se-
ries (8).

Cross-sectional Studies

A cross-sectional study does not in-
volve the passage of time. A single sam-
ple is selected without regard to disease
state or exposure status. Information on
disease state and exposure status is deter-
mined with data collected at a single time
point. Data about exposure status and

TABLE 1
Notation for 2 ! 2 Contingency
Table

X†

Y*

Yes‡ No§

Present! n11 n12
p11 p12
a b

Absent# n21 n22
p21 p22
c d

Note.—n ! number of subjects in the cell,
p ! proportion of entire sample in the cell,
a–d ! commonly used cell labels.

* Response, outcome, or disease status
variable.

† Explanatory, risk factor, or exposure vari-
able.

‡ Adverse outcome or disease-positive re-
sponse.

§ No adverse outcome or disease-negative
response.

! Exposed or risk-positive group.
# Unexposed or risk-negative group.

Figure 1. Diagram shows possible patterns of
observed data in a 2 " 2 table. Cells with black
circles contain relatively large numbers of
counts. With pattern A, n11 and n22 are large,
suggesting that when X is present, Y is “yes.”
With pattern B, n12 and n21 are large, suggest-
ing that when X is absent, Y is “yes.” With
pattern C, n11 and n21 are large, suggesting that
Y is “yes” regardless of X. With pattern D, n12

and n22 are large, suggesting that Y is “no”
regardless of X. With pattern E, n11, n12, n21,
and n22 are all about the same, suggesting that
Y is “yes” and “no” in equal proportion regard-
less of X.
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disease state can be organized into a 2 "
2 contingency table, and the prevalence
(ie, the proportion of a group that cur-
rently has a disease) can be compared for
the exposed and unexposed groups. Ef-
fect size from cross-sectional studies may
be assessed with difference in propor-
tions, RR, or OR. For example, Cogo et al
(9) studied the association between hav-
ing a major risk factor (eg, immobiliza-
tion, trauma, and/or recent surgery) and
deep vein thrombosis. This study was

performed in an outpatient setting by us-
ing a cross-sectional design. A total of
426 subjects who were referred by general
practitioners underwent contrast mate-
rial–enhanced venography to determine
deep vein thrombosis status (positive or
negative). Concurrently, information on
major risk factors was recorded as being
present or absent. They found that deep
vein thrombosis was more likely to occur
when a major risk factor was present (81
[55%] of 148) than when none was
present (90 [32%] of 278). The data are
shown in Table 4, and effect measures are
included in Table 3.

Case-Control Studies

In a case-control study, the investiga-
tor compares instances of a certain dis-
ease or condition (ie, the cases) with in-
dividuals who do not have the disease or
condition (ie, the “controls” or control
subjects). Control subjects are usually se-
lected to match the patients with cases of
disease in characteristics that might be

related to the disease or condition of in-
terest. Matching by age and sex is com-
monly used. Investigators look backward
in time (ie, retrospectively) to collect in-
formation about risk or protective factors
for both cases and controls. This is
achieved by examining past records, in-
terviewing the subject, or in some other
way. The only correct measure of effect
size for a case-control study is the OR.
However, the calculated OR may be used
to estimate RR after appropriate correc-
tion for disease frequency in the popula-
tion of interest, which will be explained
later. For example, Vachon et al (10)
studied the association between type of
hormone replacement therapy and in-
creased mammographic breast density by
using a case-control study design. They
identified 172 women who were under-
going hormone replacement therapy
who had increased breast density (cases)
and 172 women who were undergoing
hormone replacement therapy who did
not have increased breast density (con-
trols). The type of hormone replacement
therapy used by all subjects was then de-
termined. They found that combined
hormone replacement therapy was asso-
ciated with increased breast density more
often than was therapy with estrogen
alone (OR ! 2.22). The data are presented
in Table 5.

Cohort Studies

A cohort is simply a group of individ-
uals. The term is derived from Roman
military tradition; according to this tra-
dition, legions of the army were divided
into 10 cohorts. This term now means
any specified subdivision or group of
people marching together through time.
In other words, cohort studies are about
the life histories of sections of popula-
tions and the individuals who are in-

TABLE 2
Comparison of Four Study Designs

Attribute Cross-sectional Study Case-Control Study Cohort Study Experimental Study

Sample selection One sample selected without
regard to disease or
exposure status

Two samples selected: one
from disease-positive
population, one from
disease-negative
population

Two samples selected: one
from exposed
population, one from
unexposed population

One sample selected that is disease
negative; sample is randomly
assigned to treatment or control
group

Proportions that can
be estimated

Prevalence of disease in the
exposed and unexposed
groups

Proportion of cases and
controls that have been
exposed to a risk factor

Incidence of disease in
exposed and unexposed
groups

Incidence of disease in treated and
untreated (control) groups

Time reference Present look at time Backward look in time Forward look in time Forward look in time
Effect measure OR, difference in

proportions*
OR RR, difference in

proportions*
RR, difference in proportions*

* Difference in proportions may be used as an alternate measure of effect.

TABLE 3
Quantification of Effect Size for Two Binary Variables

Definition Difference of Proportions* RR† OR‡

Calculation for estimate based on
sample data

n11/n11 # n12 %
n21/n21 # n22

n11/n11 ! n12

n21/n21 ! n22
n11n22/n12n21

Calculation in terms of a–d-cell
labels

[a/(a # b)] %
[c/(c # d)]

&a/'a ! b()

&c/'c ! d()
ad/bc

Cross-sectional example (Table 4) 0.22 1.69 2.52
Case-control example (Table 5) NA§ NA§ 2.22
Cohort example (Table 6) 0.046 1.07 1.25!

Experimental example (Table 7) 0.029 1.56 1.61!

* Proportion with outcome in exposed group minus proportion with outcome in unexposed group.
† Risk of outcome in exposed group divided by risk of outcome in unexposed group.
‡ Odds of outcome in exposed group divided by odds of outcome in unexposed group.
§ NA ! not typically calculated or reported, since the statistic is not meaningful for this study

design.
! ORs may be calculated for cohort and experimental studies, but RR is preferred.

TABLE 4
Example of Cross-sectional
Study Data

Major Risk
Factor

DVT
Positive*

DVT
Negative* Total

Present 81 67 148
Absent 90 188 278

Source.—Reference 9.
* DVT ! deep venous thrombosis.
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cluded in them. In a prospective study,
investigators follow up subjects after
study inception to collect information
about development of disease. In a retro-
spective study, disease status is deter-
mined from medical records produced
prior to the beginning of the study but
after articulation of the cohorts. In both
types of studies, initially disease-free sub-
jects are classified into groups (ie, co-
horts) on the basis of exposure status
with respect to risk factors. Cumulative
incidence (ie, the proportion of subjects
who develop disease in a specified length
of time) can be computed and compared
for the exposed and unexposed cohorts.
The main difference between prospec-
tive and retrospective cohort studies is
whether the time period in question is
before (retrospective) or after (prospec-
tive) the study begins. Effect size from a
cohort study is typically quantified with
RR and/or difference in proportions. For
example, Burman et al (11) studied the
association between false-positive mam-
mograms and interval breast cancer
screening by using a prospective cohort
study design. Women in whom a false-
positive mammogram was obtained at
the most recent screening formed one
cohort, and women in whom a previ-
ously negative mammogram was ob-
tained formed the other cohort. All of the
women were followed up to determine if
they obtained a subsequent screening
mammogram within the recommended
interval (up to 2 years, depending on
age). Burman et al found no significant
difference in the likelihood that a
woman would obtain a mammogram be-
tween the two cohorts (RR ! 1.07). The
data are included in Table 6.

Experimental Studies

The characteristic that distinguishes
any experiment is that the investigator
directly manipulates one or more vari-
ables (not the outcome!). A clinical trial is

the most common type of experimental
study used in medical research. Here, the
investigator selects a sample of subjects
and assigns each to a treatment. In many
cases, one treatment may be standard
therapy or an inactive (ie, placebo) treat-
ment. These subjects are the controls,
and they are compared with the subjects
who are receiving a new or alternative
treatment. Treatment assignment is al-
most always achieved randomly so that
subjects have an equal chance of receiv-
ing one of the treatments. Subjects are
followed up in time, and the cumulative
incidence of the outcome or disease is
compared between the treatment groups.
RR and/or difference in proportions is
typically used to quantify treatment ef-
fect on the outcome. An example of such
a study can be found in an article by
Harrison et al (12) in which they describe
their trial of direct mailings to encourage
attendance for mammographic screen-
ing. At the start of the study, half of the
women were randomly assigned to re-
ceive a personally addressed informa-
tional letter encouraging them to attend
screening. The other half (ie, controls)
received no intervention. The number of
women in each group who underwent
mammography during the subsequent 2
years was enumerated. The women to
whom a letter was sent were more likely
to obtain a mammogram (RR ! 1.56).
The data are listed in Table 7.

CALCULATION OF
PROPORTIONS FROM
A 2 ! 2 TABLE

Various proportions can be calculated
from the data represented in a 2 " 2
contingency table. The cell, row, and col-
umn proportions each give different in-
formation about the data. Proportions
may be represented by percentages or
fractions, with the former having the ad-
vantage of being familiar to most people.
Cell proportions are simply the observed
number in each of the four cells divided
by the total sample size. Each cell also has
a row proportion. This is the number in
the cell divided by the total in the row
containing it. Likewise, there are four col-
umn proportions that are calculated by
dividing the number in each cell by the
total in the column that contains it.

In a 2 " 2 table organized with out-
come in the columns and exposure in the
rows, the various proportions have com-
monly understood meanings. Cell pro-
portions are the fractions of the whole
sample found in each of the four combi-
nations of exposure and outcome status.
Row proportions are the fractions with
and without the outcome. It may seem
counterintuitive that row proportions
give information about the outcome.
However, remembering that cells in a
given row have the same exposure status
helps one to clarify the issue. Similarly,

TABLE 5
Example of Case-Control Study Data

Condition Cases* Controls†

Exposed‡ 111 79
Nonexposed§ 50 79

Source.—Reference 10.
* Increased breast density.
† No increased breast density.
‡ Combined therapy.
§ Estrogen alone.

TABLE 6
Example of Cohort Study Data

Result at Last Mammography

No. Undergoing Mammography
within 2 Years*

TotalReturned Did Not Return

False-positive 602 211 813
True-negative 3,098 1,359 4,457

Source.—Reference 11.
* Within 2 years after last mammography.

TABLE 7
Example of Experimental Study Data

Treatment

Underwent Mammography within 2 Years

TotalNo. Who Did No. Who Did Not

Intervention* 100 1,129 1,229
Control† 64 1,165 1,229

Source.—Reference 12.
* Intervention indicates that subjects received a mailed reminder.
† Control indicates that subjects did not receive a mailed reminder.
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column proportions are simply the frac-
tion of exposed and unexposed subjects.

DIFFERENCE IN PROPORTIONS

The difference in proportions is used to
compare the response Y (eg, disease: yes
or no) according to the value of the ex-
planatory variable X (eg, risk factor: ex-
posed or unexposed). The difference is
defined as the proportion with the out-
come in the exposed group minus the
proportion with the outcome in the un-
exposed group. By using the a–d letters
for cell labels (Table 1), the calculation is
as follows:

&a/'a ! b() " &c/'c ! d().

For the cross-sectional study data (Table
4) we would calculate the following equa-
tion:

&81/'81 ! 67() " &90/'90 ! 188()

# 0.547 " 0.324 # 0.223.

The difference in proportions always is
between %1.0 and 1.0. It equals zero
when the response Y is statistically inde-
pendent of the explanatory variable X.
When X and Y are independent, then
there is no association between them. It
is appropriate to calculate the difference
in proportions for the cohort, cross-sec-
tional, and experimental study designs.
In a case-control study, there is no infor-
mation about the proportions that are
outcome (or disease) positive in the pop-
ulation. This is because the investigator
actually selects subjects to get a fixed
number at each level of the outcome (ie,
cases and controls). Therefore, the differ-
ence in proportions statistic is inappro-
priate for estimating the association be-
tween exposure and outcome in a case-
control study. Table 3 lists the difference
in proportions estimate for cross-sec-
tional, cohort, and experimental study
examples (9,11,12).

RISK AND RR

Risk is a term often used in medicine for
the probability that an adverse outcome,
such as a side effect, development of a
disease, or death, will occur during a spe-
cific period of time. Risk is a parameter
that is completely known only in the rare
situation when data are available for an
entire population. Most often, an inves-
tigator estimates risk in a particular pop-
ulation by taking a representative random
sample, counting those that experience
the adverse outcome during a specified

time interval, and forming a proportion
by dividing the number of adverse out-
comes by the sample size. For example,
the estimate of risk is equal to the num-
ber of subjects who experience an event
or outcome divided by the sample size.

The epidemiologic term for the result-
ing rate is the cumulative incidence of
the outcome. The incidence of an event
or outcome must be distinguished from
the prevalence of a disease or condition.
Incidence refers to events (eg, the acqui-
sition of a disease), while prevalence re-
fers to states (eg, the state of having a
disease). RR is a measure of association
between exposure to a particular factor
and risk of a certain outcome. The RR is
defined to be the ratio of risk in the ex-
posed and unexposed groups. An equiv-
alent term for RR that is sometimes used
in epidemiology is the cumulative inci-
dence ratio, which may be calculated as
follows: RR is equal to the risk among
exposed subjects divided by the risk
among unexposed subjects.

In terms of the letter labels for cells
(Table 1), RR is calculated as follows:

RR # &a/'a ! b()/&c/'c ! d().

The RR for our cohort study example (Ta-
ble 6) would be calculated by dividing
the fraction with a mammogram in the
false-positive cohort (602/813 ! 0.74) by
the fraction with a mammogram in the
true-negative cohort (3,098/4,457 !
0.695). This yields 1.065. The value of RR
can be any nonnegative number. An RR
of 1.0 corresponds to independence of
(or no association between) exposure sta-
tus and adverse outcome. When RR is
greater than 1.0, the risk of disease is
increased when the risk factor is present.
When RR is less than 1.0, the risk of dis-
ease is decreased when the risk factor is
present. In the latter case, the factor is
more properly described as a protective
factor. The interpretation of RR is quite
natural. For example, an RR equal to 2.0
means that an exposed person is twice as
likely to have an adverse outcome as one
who is not exposed, and an RR of 0.5
means that an exposed person is half as
likely to have the outcome. Table 3 illus-
trates the calculation of the RR estimates
from the various examples.

Any estimate of relative risk must be
considered in the context of the absolute
risk. Motulsky (5) gives an example to
show how looking only at RR can be mis-
leading. Consider a vaccine that halves
the risk of a particular infection. In other
words, the vaccinated subjects have an
RR of 0.5 of getting infected compared

with their unvaccinated peers. The public
health impact depends not only on the
RR but also on the absolute risk of infec-
tion. If the risk of infection is two per
million unvaccinated people in a year,
then halving the risk to one per million is
not so important. However, if the risk of
infection is two in 10 unvaccinated peo-
ple in a year, then halving the risk is of
immense consequence by preventing
100,000 cases per million. Therefore, it is
more informative to compare vaccinated
to unvaccinated cohorts by using the dif-
ference in proportions. With the rare dis-
ease, the difference is 0.0000001, while
for the common disease it is 0.1. This
logic underlies the concept of number
needed to treat and number needed to
harm. These popular measures developed
for evidence-based medicine allow direct
comparison of effects of interventions
(ie, number needed to treat) or risk fac-
tors (ie, number needed to harm). In our
vaccination scenario, the number needed
to harm (ie, to prevent one infection) for
the rare disease is 1 million and for the
common disease is 10.

ODDS AND THE OR

The OR provides a third way of compar-
ing proportions in a 2 " 2 contingency
table. An OR is computed from odds.
Odds and probabilities are different ways
of expressing the chance that an out-
come may occur. They are defined as fol-
lows: The probability of outcome is equal
to the number of times the outcome is
observed divided by the total observa-
tions. The odds of outcome is equal to
the probability that the outcome does
occur divided by the probability that the
outcome does not occur.

We are familiar with the concept of
odds through gambling. Suppose that the
odds a horse named Lulu will win a race
are 3:2 (ie, read as “three to two”). The
3:2 is equivalent to 3/2 or 1.5. The prob-
ability that Lulu will be the first to cross
the finish line can be calculated from the
odds, since there is a deterministic rela-
tionship between odds and probability
(ie, if you know the value of one, then
you can find the value of the other). We
know that:

Pr # Odds/'1 ! Odds(

and

Odds # Pr/'1 " Pr(,

where Pr is probability.
The probability that Lulu will win the

race is (1.5)/1 # (1.5) ! 0.60, or 60%.
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Probabilities always range from 0 to 1.0,
while odds can be any nonnegative num-
ber. The odds of a medical outcome in
exposed and unexposed groups are de-
fined as follows: Odds of disease in the
exposed group is equal to the probability
that the disease occurs in the exposed
group divided by the probability that the
disease does not occur in the exposed
group. Odds of disease in the unexposed
group is equal to the probability that the
disease occurs in the unexposed group
divided by the probability that the dis-
ease does not occur in the unexposed
group.

It is helpful to define odds in terms of
the a–d notation shown in Table 1. Use-
ful mathematical simplifications (where
Oddsexp is the odds of outcome in the
exposed group and Oddsunex is the odds
of outcome in the unexposed group) that
arise from this definition are as follows:

Oddsexp # &a/'a ! b()/&b/'a ! b() # a/b

and

Oddsunex # &c/'c ! d()/&d/'c ! d() # c/d.

Note that these simplifications mean
that the outcome probabilities do not
have to be known in order to calculate
odds. This is especially relevant in the
analysis of case-control studies, as will be
illustrated. The OR is defined as the ratio
of the odds and may be calculated as
follows: OR is equal to the odds of disease
in the exposed group divided by the odds
of disease in the unexposed group. By
using the a–d labeling,

OR # 'a/b(/'c/d( # ad/bc.

The OR for our case-control example (Ta-
ble 5) would be calculated as follows:

OR # &'111('79()/&'79('50() # 2.22.

The OR has another property that is
particularly useful for analyzing case-
control studies. The OR we calculate from
a case-control study is actually the ratio
of odds of exposure, not outcome. This is
because the numbers of subjects with and
without the outcome are always fixed in
a case-control study. However, the calcu-
lation for exposure OR and that for out-
come OR are mathematically equivalent,
as shown here:

'a/c(/'b/d( # ad/bc # 'a/b(/'c/d(.

Therefore, in our example, we can cor-
rectly state that the odds of increased
breast density is 2.2 times greater in those
receiving combined hormone replace-
ment therapy than it is in those receiving
estrogen alone. Authors, and readers,

must be very circumspect about continu-
ing with the chain of inference to state
that the risk of increased breast density in
those receiving combined hormone re-
placement therapy is 2.2 times higher
than is the risk of increased breast den-
sity in those receiving estrogen alone. In
doing this, one commits the logical error
of assuming causation from association.
Furthermore, the OR is not a good esti-
mator of RR when the outcome is com-
mon in the population being studied.

RELATIONSHIP BETWEEN
RR AND OR

There is a strict and invariant math-
ematic relationship between RR and OR
when they both are from the same pop-
ulation, as may be observed with the fol-
lowing equation:

RR # OR/&'1 " Pro( ! 'Pro('OR(),

where Pro is the probability of the out-
come in the unexposed group.

The relationship implies that the mag-
nitude of OR and that of RR are similar
only when Pro is low (13). In epidemiol-
ogy, Pro is referred to as the incidence of
outcome in the unexposed group. Thus,
the OR obtained in a case-control study
accurately estimates RR only when the
outcome in the population being studied
is rare. Figure 2 shows the relationship

between RR and OR for various values of
Pro. Note that the values of RR and OR are
similar only when the Pro is small (eg,
10/100 ! 10% or less). At increasing Pro,
ORs that are less than 1.0 underestimate
the RR, and ORs that are greater than 1.0
overestimate the RR. A rule of thumb is
that the OR should be corrected when
incidence of the outcome being studied
is greater than 10% if the OR is greater
than 2.5 or the OR is less than 0.5 (4).
Note that with a case-control study, the
probability of outcome in the unexposed
must be obtained separately because it
cannot be estimated from the sample.

This distinction was at the heart of the
critique of Schwartz et al (4) regarding
the article by Schulman et al (3). Schul-
man et al had reported an OR of 0.6 for
referral to cardiac catheterization (out-
come) between blacks and whites (ex-
planatory). However, referral for cathe-
terization occurred up to 90% of the
time, so the corresponding RR should
have been 0.93. This information would
have created a rather unspectacular news
story (ie, blacks referred 7% less often
than whites) compared with the initial,
and incorrect, headlines stating that
blacks were referred 40% less often than
whites.

In our examples, this relationship is
also apparent. In the studies where both
RR and OR were calculated, the OR is

Figure 2. Graph shows relationship between OR and probability of outcome in unexposed
group. Curves represent values of underlying RR as labeled. Rectangle formed by dotted lines
represents suggested bounds on OR and probability of outcome in the unexposed group within
which no correction from OR to RR is needed. When OR is more than 2.5 or less than 0.5 or
probability of outcome in the unexposed group is more than 0.1, a correction (calculation in text)
should be applied.
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larger than the RR, as we now expect. In
the experimental study example, the OR
of 1.61 is only slightly larger than the RR
of 1.56. This is because the probability of
mammography (the outcome) is rare at
6.7 per 100. In contrast, the cohort study
yields an OR of 1.25, which is consider-
ably larger than the RR of 1.07, with the
high overall probability of mammogra-
phy of 73 per 100 explaining the larger
difference.

CONFOUNDING VARIABLES
AND THE SIMPSON PARADOX

An important consideration in any study
design is the possibility of confounding
by additional variables that mask or alter
the nature of the relationship between an
explanatory variable and the outcome.
Consider data from three binary vari-
ables, the now familiar X and Y, as well as
a new variable Z. These can be repre-
sented in two separate 2 " 2 contingency
tables: one for X and Y at level 1 of vari-
able Z and one for X and Y at level 2 of
variable Z. Alternatively, the X and Y
data can be represented in a single table
that ignores the values of Z (ie, pools the
data across Z).

The problem occurs when the magni-
tude of association between X (explan-
atory) and Y (outcome) is different at
each level of Z (confounder). Estima-
tion of the association between X and Y
from the pooled 2 " 2 table (ignoring
Z) is inappropriate and often incorrect.
In such cases, it is misleading to even
list the data in aggregate form. There
are statistical methods to correct for
confounding variables, with the as-
sumption that they are known and
measurable. A family of techniques at-
tributed to Cochran (14) and Mantel
and Haenszel (15) are commonly used

to produce summary estimates of asso-
ciation between X and Y corrected for
the third variable Z.

The entire rationale for the use of ran-
domized clinical trials is to eliminate the
problem of unknown and/or immeasur-
able confounding variables. In a clinical
trial, subjects are randomly assigned to
levels of X (the treatment or independent
variable). The outcome (Y) is then mea-
sured during the course of the study. The
beauty of this scheme is that all poten-
tially confounding variables (Z) are
equally distributed among the treat-
ment groups. Therefore, they cannot af-
fect the estimate of association between
treatment and outcome. For random-
ization to be effective in elimination of
the potential for confounding, it must
be successful. This requires scrupulous
attention to detail by investigators in
conducting, verifying, and document-
ing the randomization used in any
study.

It is possible for the relationship be-
tween X and Y to actually change direc-
tion if the Z data are ignored. For in-
stance, OR calculated from pooled data
may be less than 1.0, while OR calcu-
lated with the separate (so-called strat-
ified) tables is greater than 1.0. This
phenomenon is referred to as the Simp-
son paradox, as Simpson is credited
with an article in which he explains
mathematically how this contradiction
can occur (16). Such paradoxic results
are not only numerically possible but
they actually arise in real-world situa-
tions and can have profound social im-
plications.

Agresti (13) illustrated the Simpson
paradox by using death penalty data for
black and white defendants charged
with murder in Florida between 1976
and 1987 (17). He showed that when

the victim’s race is ignored, the per-
centage of death penalty sentences was
higher for white defendants. However,
after controlling for the victim’s race,
the percentage of death penalty sen-
tences was higher for black defendants.
The paradox arose because juries ap-
plied the death penalty more fre-
quently when the victim was white,
and defendants in such cases were
mostly white. The victim’s race (Z)
dominated the relationship between
the defendant’s race (X) and the death
penalty verdict (Y). Table 8 lists the
data stratified by the victim’s race and
combined across the victim’s race. As
indicated in the table, unadjusted RR of
receiving the death penalty (white/
black) with white victims is 0.495; with
black victims, 0.0; and with combined
victims, 1.40. The Mantel-Haenszel es-
timate of the common RR is 0.48,
thus solving the paradox. The method
for calculating the Mantel-Haenszel
summary estimates is beyond the scope
of this article. However, confounding
variables, the Simpson paradox, and
how to handle them are discussed
in any comprehensive text about bio-
statistics or medical research design
(5,6).

CONCLUSION

This article has focused on statistical
analysis of count data that arise from the
four basic designs used in medical re-
search (ie, cross-sectional, case-control,
cohort, and experimental study designs).
Each of these designs often yields data
that are best summarized in a 2 " 2 con-
tingency table. Statistics calculated from
such tables include cell, row, and column
proportions; differences in proportion;
RRs; and ORs. These statistics are used to
estimate associated population parame-
ters and are selected to suit the specific
aims and design of the study. For infer-
ence concerning association between
study variables, one must use the correct
statistic, allow for variability, and ac-
count for any confounding variables.
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Technology Assessment
for Radiologists1

Health technology assessment is the systematic and quantitative evaluation of the
safety, efficacy, and cost of health care interventions. This article outlines aspects of
technology assessment of diagnostic imaging. First, it presents a conceptual frame-
work of a hierarchy of levels of efficacy that should guide thinking about imaging
test evaluation. In particular, the framework shows how the question answered by
most evaluations of imaging tests, “How well does this test distinguish disease from
the nondiseased state?” relates to the fundamental questions for all health technol-
ogy assessment, “How much does this intervention improve the health of people?”
and “What is the cost of that improvement?” Second, it describes decision analysis
and cost-effectiveness analysis, which are quantitative modeling techniques usually
used to answer the two core questions for imaging. Third, it outlines design and
operational considerations that are vital if researchers who are conducting an
experimental study are to make a quality contribution to technology assessment,
either directly through their findings or as an input into decision analyses. Finally, it
includes a separate discussion of screening—that is, the application of diagnostic
tests to nonsymptomatic populations—because the requirements for good screen-
ing tests are different from those for diagnostic tests of symptomatic patients and
because the appropriate evaluation methods also differ.
© RSNA, 2004

Technologic innovation and diffusion of technology into daily practice in radiology have
been nothing short of remarkable in the past several decades. Health technology assess-
ment is the careful evaluation of a medical technology for evidence of its safety, efficacy,
cost, cost-effectiveness, and ethical and legal implications (1). Interest and research in
health technology assessment are growing in response to the wider application of new
technology and the increasing costs of health care today (2).

The goal of this article is to describe some of the rationale and the methods of technol-
ogy assessment as applied to radiology. For any health care intervention, including
diagnostic imaging tests, the ultimate questions are, “How much does this do to improve
the health of people?” and “How much does it cost for that gain in health?” We need such
an understanding of the radiology services we provide to advocate for our patients and to
use our resources efficiently and effectively.

OUTCOMES

Measures of diagnostic accuracy, which are the metrics most commonly used for evalua-
tion of diagnostic tests, answer the question, “How well does this test distinguish disease
from the nondiseased state?” The answer to that question often does not provide an
answer to the questions about improvement of health and the cost of that improvement,
which are the core outcome questions about health care interventions (3,4).

The most productive way to think about this gap between diagnostic accuracy on the
one hand and outcomes on the other hand and to think about the inclusion of relevant
outcomes in the evaluation of diagnostic tests is to use the conceptual scheme of a six-level
“hierarchy of efficacy” developed by Fryback and Thornbury (5,6) (Table ). They point out
that efficacy at any level in their hierarchy is necessary for efficacy at the level with the
next highest number but is not sufficient. In their scheme, diagnostic accuracy is at level
2, and patient and societal outcomes are at levels 5 and 6, respectively. Thus, there may be
“many a slip between cup and lip”—that is, between diagnostic accuracy of an imaging test
on the one hand and improved health and adequate cost-effectiveness on the other.
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Let us trace partway through the schema,
starting at the lowest level, to understand
the principle that efficacy at one level is
necessary but not sufficient for efficacy at
the next level. Technical efficacy (level 1),
such as a certain minimum spatial resolu-
tion, is necessary for diagnostic accuracy
(level 2), but it does not guarantee it. Sim-
ilarly, diagnostic accuracy is necessary if a
test is to affect the clinician’s diagnosis
(level 3), but it is not sufficient. Rather,
other sources of information, such as pa-
tient history, may dominate, so that even a
highly accurate test may have little or no
effect on the diagnosis. In such an in-
stance, fairly obviously, the test does not
contribute to the level 5 goal of improving
patient health.

As the Table shows, there are multiple
measures that can be used to quantify the
efficacy of a diagnostic imaging test at
any of the six levels. Hence, evaluations
of imaging tests can involve a variety of
measures. Thinking in terms of the hier-
archy is also helpful for identification of
the level(s) at which information should
be obtained in an evaluation of a diag-
nostic imaging test. Experience, as well as
reflection, has taught some lessons. The
most important of these include:

1. Because higher-level efficacy is pos-
sible only if lower-level efficacy exists, it
is often useful to measure efficacy at rel-
atively low-numbered levels.

2. In particular, in the development of
a test, it is helpful to measure aspects of
technical efficacy (level 1), such as sharp-
ness, noise level, and ability to visualize
the anatomic structures of interest. An
important aspect of test development
consists of finding the technical parame-
ters (voltage, section thickness, etc) that
give the best diagnostic accuracy; these
measures of technical efficacy are often
key results in that process.

3. Diagnostic accuracy (level 2) is the
highest level of efficacy that is character-
istic of the test alone. For example, the
sensitivity and specificity of a test are not
dependent on what other diagnostic in-
formation is available, unlike level 3 (di-
agnosis). Also, the methodology and sta-
tistics used in measurement of diagnostic
accuracy are relatively fully developed.
Therefore, measurement of diagnostic ac-
curacy is usually worthwhile.

4. Above diagnostic accuracy, effect
on treatment (level 4), an “intermediate
outcome,” is relatively attractive to mea-
sure. It can be measured fairly easily and
reliably in a prospective study, and it is
closer in the hierarchy to the ultimate
criteria, effect on patient health (level 5)
and cost-effectiveness (level 6).

5. Effect on patient health (level 5) is usu-
ally observable only after a substantial delay,
especially for chronic illnesses, such as car-
diovascular disease and cancer, which are
currently the predominant causes of mortal-
ity in the United States. Also, it is the end
result of a multistep process of health care.
Because diagnostic tests occur near the be-
ginning of the process, and some random
variation enters into the results at every step,
the effect of a diagnostic test on final out-
comes is usually difficult to observe without
an inordinate number of patients. For exam-
ple, the current principal randomized con-
trolled trial of computed tomographic (CT)
screening for lung cancer requires some
50,000 patients and is expected to take 8
years and cost $200 million (7). Thus, effects
on patient health (level 5) and cost-effective-
ness (level 6) are uncommon as end points in
experimental studies on the evaluation of
diagnostic tests.

CLINICAL DECISION ANALYSIS
AND COST-EFFECTIVENESS
ANALYSIS

Instead, assessments of imaging technolo-
gies at levels 5 and 6 of the efficacy hierar-
chy are generally conducted by using
decision analysis rather than direct experi-
mental studies. Decision analysis (8–11) is
an objective and systematic technique for
combining the results of experimental
studies that cover different health care
steps to estimate effects of care processes

more extensive than those directly studied
in any single experimental research
project. Cost-effectiveness analysis is a
form of decision analysis that involves
evaluation of the costs of health care, as
well as the outcomes (12,13). What follows
is a brief explanation of clinical decision
analysis and cost-effectiveness analysis and
the role they may play in technology as-
sessment in radiology. Although we con-
centrate on cost-effectiveness analysis, the
same methods and applications apply to
decision analysis.

Cost-effectiveness analysis recognizes
that the results of care are rarely 0% and
100% outcomes but rather are probabilis-
tic (14). It involves the creation of algo-
rithms, usually displayed as decision
trees, as shown in Figure 1, which incor-
porate probabilities of events and, often,
the valuations (usually called “utilities”)
of possible outcomes of these events. In-
dividual or population-based preferences
for certain outcomes and treatments are
factored into these utilities.

Cost-effectiveness analysis can be di-
vided into three basic steps: defining the
problem, building the decision model,
and analyzing the model.

Defining the Problem

For any cost-effectiveness analysis, one
of the most difficult tasks is defining the
appropriate research question. The issues
to address in defining the problem are the

Hierarchy of Efficacy for Diagnostic Tests

Level Typical Measures

1, Technical efficacy Resolution of line pairs
Pixels per millimeter
Section thickness
Noise level

2, Diagnostic accuracy Sensitivity
Specificity
Area under the receiver operating characteristic curve

3, Diagnosis Percentage of cases in which image is judged helpful in making
the diagnosis

Percentage of cases in which diagnosis made without the test
is altered—or altered substantially—when information from
the test is received

4, Treatment Percentage of cases in which image is judged helpful in
planning patient treatment

Percentage of cases in which treatment planned without the
test is changed after information from the test is received

5, Patient health outcomes Percentage of patients improved with test conducted
compared with that improved without test conducted

Percentage difference in specific morbidities with test
compared with those without

Mean increase in quality-adjusted life years with test compared
with that without

6, Societal value Cost-effectiveness from a societal perspective
Cost per life saved, calculated from a societal perspective

Source.—Adapted and reprinted, with permission, from reference 6.
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population reference case, strategies, time
horizon, perspective, and efficacy (out-
come) measures. The reference case is a
description of the patient population the
cost-effectiveness analysis is intended to
cover. For example, the reference case for
the cost-effectiveness analysis in Figure 1
consists of persons with acute abdominal
pain seen in the emergency department.

The issue of strategies is, what are the care
strategies that we should compare? Too
many strategies may be confusing to com-
pare. Too few may make an analysis suspect
of missing possibly superior strategies. The
decision tree in Figure 1 compares costs and
outcomes of a clinical examination versus an
imaging test for the diagnosis of acute ap-
pendicitis; in a fuller model, ultrasonogra-
phy (US) and CT might be considered sepa-
rate imaging strategies. In general, cost-
effectiveness analysis and decision analysis
address whether a new diagnostic test or
treatment strategy should replace the current
standard of care, in which case the current
standard and the proposed new approach
are the strategies to include. Alternatively,
often the issue is which of a series of tests or
treatments is best, and these then become
the strategies to include.

The time horizon for which the cost-effec-
tiveness analysis model is used to evaluate
costs, benefits, and risks of each strategy
must be stated and explained. Sometimes,
the time horizon may be limited because of
incomplete data, but this creates a bias
against strategies with long-term benefits.

Finally, cost-effectiveness analysis al-
lows costs to be counted from different
perspectives. The perspective might be
that of a third-party payer, in which case
only insurance payments count as costs,
or that of society, in which case all mon-
etary costs, including those paid by the
patient, count, and so—at least in some
analyses—do nonmonetary costs, such

as travel and waiting time involved in
obtaining care.

Building the Cost-Effectiveness
Analysis Model

Cost-effectiveness analysis is usually
based on a decision tree, a visual repre-
sentation of the research question (Fig 1).
These decision trees are created and ana-
lyzed with readily available computer
software, such as DATA (TreeAge Soft-
ware, Williamstown, Mass). The tree in-
corporates the choices, probabilities of
events occurring, outcomes, and utilities
for each strategy being considered. Each
branch of the tree must have a probabil-
ity assigned to it, and each path in the
tree must have a cost and outcome as-
signed. Data typically come from direct
studies of varying quality, from expert
opinion (which is usually unavoidable
because some needed data values can not
be obtained in any other way), and from
some less directly relevant literature. For
example, in Figure 1, the probability of a
positive test result may be selected from
published literature and added to the de-
cision tree under the branch labeled
“Positive Test/Surgery.” Costs are fre-
quently not ascertained directly, but
rather are estimated by using proxies
such as Medicare reimbursement rates or
the charge and/or cost data of a hospital.
Building the decision tree requires expe-
rience and judgment.

The complexity of cost-effectiveness
analysis sometimes makes it difficult to
understand and therefore undervalued
(14,15). One way to improve understand-
ing and allow readers to judge for them-
selves the value of a cost-effectiveness
analysis model is to be explicit about the
assumptions of the model. Many as-
sumptions are needed simply because of

limited data available to answer the re-
search question.

Analyzing the Cost-Effectiveness
Analysis Model

Once the model has been created, anal-
ysis should then include baseline analysis
of cost and effectiveness and sensitivity
analysis. The average cost and effective-
ness for each strategy, considering all the
outcomes to which it might lead, are
computed simultaneously. We calculate
averages by weighting the end probabili-
ties of each branch and by summing for
each strategy by moving from right to
left in the tree. In cost-effectiveness anal-
ysis decision trees such as that in Figure
1, the costs and utilities for each outcome
would be placed in the decision tree at
the right end of each branch.

Possible results when comparing two
strategies include the following: One
strategy is less expensive and more effec-
tive than another, one strategy is more
expensive and less effective, one strategy
is less expensive but less effective, and
one strategy is more expensive but more
effective. The choice in the first two sit-
uations is clear, and the better strategy is
called “dominant.” The final two situa-
tions involve trade-offs in cost versus ef-
fectiveness, however. In these situations,
one compares strategies by using the in-
cremental cost-effectiveness ratio, which
allows evaluation of the ratio of increase
in cost to increase in effectiveness. What
maximal incremental cost-effectiveness
ratio is acceptable is open to debate, but
for the United States, $50,000–$100,000
per year of life in perfect health (usually
called a “quality-adjusted life-year”) is
commonly recommended as a maximum.

Almost all payers in the United States
state that they consider only effective-
ness, not cost. Implicitly, then, they ac-
cept an indefinitely high incremental
cost-effectiveness ratio—it does not mat-
ter how much more expensive a strategy
is, as long as it is the least bit more effec-
tive or the public demands it intensely.

The final task in cost-effectiveness
analysis is sensitivity analysis. Sensitivity
analysis consists of changing “parameter
values” (numerical values, such as prob-
abilities, costs, and valuation of out-
comes) in the model to find out what
effect they have on the conclusions. A
model should be tested in this way for
“robustness,” or strength of its conclu-
sions with regard to changes in its as-
sumptions and uncertainty in the param-
eters taken from the literature or expert
opinion. If a small change in the value of

Figure 1. Example of a typical imaging decision analysis tree. In this example, an imaging test
is compared with clinical examination for the correct diagnosis of acute appendicitis.
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a parameter leads to a change in the pre-
ferred strategy of the model, then the
conclusion is said to be sensitive to that
parameter, and the conclusion is weak.
Sensitivity analysis may persuade doubt-
ful readers of the soundness of the con-
clusions of the model by showing that
the researchers were thorough and unbi-
ased and the conclusions are not sensi-
tive to the assumptions or parameters the
readers question. Often, however, sensi-
tivity analysis will show that conclusions
are not robust. Alternatively, another
cost-effectiveness analysis, conducted by
different researchers by using different
assumptions and parameters (which is re-
ally a form of sensitivity analysis), will
reach different conclusions. While dis-
couraging, a similar situation is not un-
common with experimental studies
(such as clinical research), with one study
having findings different from another.
Also, identification of the parameters and
assumptions to which the results are sen-
sitive can be very helpful, because it tells
researchers what needs to be investigated
further through experimental studies to
reach reliable conclusions.

CHARACTERISTICS OF
HIGH-QUALITY EXPERIMENTAL
STUDIES

Whether an experimental study is in-
tended to provide direct findings (princi-
pally, as we have seen, at efficacy levels 1
through 4) or to provide findings to be
used as input into decision analysis
and/or cost-effectiveness analysis (which
are then used to assess level 5 and 6 effi-
cacy), several design and operational
considerations are important for the
study to be of high quality and substan-
tial value (2,16–19). Regrettably, the
quality of studies on the evaluation of
diagnostic imaging is very often poor
(20–23). Therefore, radiologists should
be aware of these considerations so that
they may read the literature critically and
also improve the quality of the technol-
ogy assessment studies they conduct.

The most important considerations
follow. We focus on studies of diagnostic
accuracy, since these are most common
and constitute the principal focus of ra-
diologists, but most of what is said ap-
plies to experimental studies of other lev-
els of the hierarchy of efficacy.

Patient Characteristics

Patients in a study should be like those in
whom a test will be applied in practice. Of-
ten, in initial studies, a test is applied pre-

dominantly to very sick patients or com-
pletely healthy individuals. This “spectrum
bias” exaggerates the real-world ability of the
test to distinguish disease from health be-
cause intermediate cases that are less than
totally clear cut are eliminated. As a result,
initial reports on a new test are often overly
optimistic. On the other hand, such spec-
trum bias can be useful in initial studies to
ascertain if a test has any possible promise
and to help establish the operating parame-
ters at which the test works best.

Number of Cases

The number of cases included in stud-
ies should be adequate. Almost always,
the smaller the number of cases, the
larger the minimum difference that can
reliably be observed. Before a study is be-
gun, a statistician should be asked to per-
form a power calculation to ascertain the
number of cases required to detect, with
desired reliability, the minimum differ-
ence regarded as clinically important. Of-
ten, the number of cases included in ac-
tual studies is inadequate (22). Such
studies are referred to as “underpowered”
and can lead to errors.

Design Considerations

Prospective studies are almost always
preferable to retrospective studies. “Well
begun is half done” carries a corollary that
“poorly begun is hard to salvage.” In a ret-
rospective study, one has to work from
someone else’s design and data collection,
and these are typically far from optimal
from the standpoint of your purposes.

The temptation to include in the re-
search everything that might be studied
should be resisted, lest the study collapse
from its own complexity.

Often, the purpose of a study is to com-
pare two diagnostic tests—for example,
to compare a proposed new test with an
established one. In this situation, unless
data on patient health outcomes and cost
must be directly obtained, an optimal de-
sign consists of applying both tests to all
study patients, with interpretation of
each test performed while blinded to the
results of the other. In contrast, the com-
mon practice of using “historical con-
trols” to represent the performance of the
established test is usually a poor choice.
The patient population in the historical
control may be different, and the execu-
tion of the historical series may not meet
standards of current best practice.

Reference Standard

The reference standard (sometimes less
formally called the “gold standard”)

needs to be chosen carefully. While a per-
fect reference standard—one with 100%
accuracy—often cannot be attained, it is
important to do as well as possible. Meth-
odologists routinely warn (4,22,24) that a
reference standard that is dependent,
even in part, on the test(s) being evalu-
ated involves circular reasoning, and
they say it is therefore seriously deficient,
but they note that such standards are
nonetheless not infrequently used.

Timing

Timing is important because diagnos-
tic imaging is a field that is changing
relatively rapidly. There is little point in
undertaking a large-scale study when a
new technique is in the initial develop-
mental stage and is changing particularly
rapidly; results will be obsolete before
they are published. On the other hand, it
is not wise to wait until a technique is
fully mature because, by then, it will of-
ten be widely disseminated, making the
study too late for its results to readily
influence general clinical practice. Use of
techniques that lead to rapid completion
of a study, such as gathering data from
multiple sites, is highly desirable because
imaging evolves relatively rapidly.

Efficacy and Effectiveness

Most evaluations of diagnostic tests—
and of any other medical care—are studies
of efficacy, which is defined as results ob-
tained under ideal conditions, such as
those of a careful research project. Initially,
efficacy is important to ascertain, but ulti-
mately, one would want to know effective-
ness, which is defined as results obtained
in ordinary practice. Effectiveness is usu-
ally poorer than efficacy. For example,
studies in individual academic institu-
tions—that is, efficacy studies—showed
that abdominal CT for patients suspected
of having appendicitis significantly re-
duced the perforation rate and unneces-
sary surgery rate (25,26), but a study of
essentially all hospital discharges in Wash-
ington state—that is, an effectiveness
study—showed no improvement in either
rate between 1987 and 1998, a period
when laparoscopy and cross-sectional im-
aging techniques, including CT, became
widely available (27). The systematization
necessary for an organized study tends to
preclude observation of effectiveness—the
study protocol ensures uniform applica-
tion of the test with its parameters set at
optimal levels, and people are generally
more careful and consistent and do better
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when they know their activity is being ob-
served (this is called the Hawthorne effect).

Figure 2 lists some additional impor-
tant considerations for high-quality stud-
ies. Sunshine and McNeil (16) discuss the
above considerations and those in Figure
2 in more detail.

SCREENING

Screening (28,29) is the performance of a di-
agnostic test in an asymptomatic population
with the aim of reducing morbidity and/or
mortality from disease. The requirements of
efficacious screening are somewhat different
from those of “conventional” diagnostic
testing—that is, testing applied to symptom-
atic patients. These differences apply to the
diagnostic test, available treatment, and eval-
uation of the test.

The Test

Because the prevalence of disease in a
screening population is very low—for exam-
ple, approximately one-half percent in
screening mammography—a screening test
must be highly specific. Otherwise, false-pos-

itive findings will greatly outnumber true-
positive findings (even at the relatively high
90%–95% specificity rate for mammogra-
phy—ie, 5%–10% recall rate—false-positive
findings outnumber true-positive findings
by 10–20 to 1), and the cost and morbidity
of working up patients with false-positive
findings will outweigh the gains from early
detection in those with true-positive find-
ings. Similarly, the cost and morbidity of the
screening test itself (which apply to every
patient screened) must be relatively low; oth-
erwise, they will outweigh the gains of
screening, which can occur only for the very
small percentage of patients with true-posi-
tive findings.

In contrast, sensitivity can be modest. For
example, screening mammography has an
approximate 75% sensitivity, yet it allows us
to identify three of every four possible breast
cancers that could be detected if the test were
perfectly (100%) sensitive. These require-
ments for a screening test can be somewhat
eased if a high-risk population is identified,
because the proportion of true-positive find-
ings will increase. Note that while a screen-
ing test optimally has high specificity and
may only need modest sensitivity, an opti-
mal diagnostic test for symptomatic patients
should have a high sensitivity, but the spec-
ificity may be modest.

Treatment

Oddly, the available treatment must be
intermediate in efficacy. If treatment is
fully efficacious—more specifically, if treat-
ment of symptomatic patients is as effica-
cious and no more costly than the pre-
symptomatic treatment made possible by

screening—then nothing is to be gained by
identifying disease before it becomes
symptomatic. Conversely, if treatment is
completely inefficacious—that is, there is
no useful treatment for even presymptom-
atic disease—there is also no possible gain
from screening. Screening can only be ben-
eficial if treatment of presymptomatic dis-
ease is more efficacious than treatment of
symptomatic disease (29–31). (However,
some hold that screening for untreatable
genetic diseases and other untreatable dis-
eases can be reasonable because parents
can alter reproductive behavior and pa-
tients can gain more time to prepare for
the consequences of disease.) Given these
requirements regarding treatment effec-
tiveness for screening to be sensible, new
developments in treatment—for example,
the introduction of pharmaceuticals such
as donepezil hydrochloride (Aricept; Eisai
America, New York, NY) that slows the pre-
viously unalterable rate of progression of
Alzheimer disease—can completely alter
the relevance of screening.

Evaluation of Screening

In general, the efficacy of treatment of pr-
esymptomatic disease relative to that of
symptomatic disease is not known, although
this is a critical issue for screening, as indi-
cated in the previous paragraph. The reason
for the lack of knowledge is as follows: if
screening has not been done previously, rel-
ative efficacy simply is not known because
presymptomatic cases have not been identi-
fied and treated. On the other hand, if the
issue is introduction of a more sensitive
screening test, one does not know the effi-
cacy of treating the additional, presumably
less advanced cases the new test detects.
Partly for this reason, evaluation of screening
generally has to consist of a randomized con-
trolled trial in which (a) the intervention
consists of the test and the treatment in com-
bination and (b) the end point studied is the
death rate, morbidity, or other adverse out-
come(s) from the disease being screening for
in the intervention population compared
with the rates in the control population.

Biases

Three well-known biases (30,32,33)
also generally necessitate this random-
ized controlled trial study design for eval-
uation of screening tests and generally
preclude the use of other end points,
such as 5-year survival from time of diag-
nosis. These three biases should be un-
derstood by all radiologists.

“Lead-time bias” refers to the fact that
screening will allow detection of disease

Figure 3. Example of length bias. Half of the
cases are the more indolent form (longer pre-
clinical phase, longer symptomatic phase, and
less severe adverse events, as shown by a
smaller x). At any point in time (t1 and t2 are
randomly chosen points in time), however,
two-thirds of the cases detectable only with
screening are indolent.

Figure 2. Additional procedures for enhance-
ment of study quality and rapidity, with par-
ticular reference to a study of substantial scale.
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earlier in its natural history than will
waiting for symptoms, so any measure-
ment from time of diagnosis will be bi-
ased in favor of screening, regardless of
the effectiveness of treatment. Consider
an oversimplified example: For lung can-
cer, 5-year survival from diagnosis is cur-
rently 10%–20%. Assume that CT screen-
ing advances diagnosis by 51⁄2 years, but
treatment has absolutely no value. Then
5-year survival would nonetheless in-
crease to essentially 100% with screen-
ing. In short, survival time in a screened
group will incorrectly appear to be better
than that in a nonscreened group.

“Overdiagnosis bias” or “pseudodis-
ease” (29,31) refers to the fact that apply-
ing a diagnostic test to asymptomatic in-
dividuals will identify “positive cases”
that will never become clinically mani-
fest in a person’s lifetime. Prostate cancer
provides a striking example. It is the most
common nonskin malignancy in men in
the United States, affecting 10% of them,
but careful histopathologic examination
at autopsy shows microscopic prostate
cancers in nearly 50% of men over the
age of 75 years (34). If an imaging test as
sensitive as histologic examination at au-
topsy were developed, but early detection
had absolutely no effect on outcomes,
the percentage of “cases” showing ad-
verse outcomes would nonetheless de-
crease by four-fifths—but only because
four-fifths of the “cases” never would
have shown any effects of the disease in
the absence of screening and treatment.
The general point is that, because of over-
diagnosis bias, any study of the outcome
of cases identified with a screening test
will be biased toward screening, for many
of the cases identified with screening
would never have had any adverse out-
comes, even in the absence of treatment.
Incidentally, the morbidity and cost of
treating such cases is one of the negative
consequences of screening.

“Length bias” can be thought of as an
attenuated form of pseudodisease. It arises
because cases of a disease vary in aggres-
siveness, with the faster-progressing cases
typically also having a natural history with
greater morbidity and mortality. Cases de-
tected with screening are typically dispro-
portionately indolent. This is because slow-
progressing cases remain longer in the
presymptomatic phase in which they are
detectable only with screening and do not
manifest symptoms. Thus, a test that helps
identify asymptomatic cases dispropor-
tionately uncovers indolent cases, as Figure
3 shows. Hence, cases detected with
screening disproportionately have a rela-
tively favorable prognosis, regardless of the

effectiveness of treatment. Thus, any study
of outcomes in cases detected with screen-
ing (vs those detected when symptoms oc-
cur) will be biased toward screening.

Other Considerations

While change in morbidity or mortal-
ity from the disease being screened for is
the prime measure of the effect of screen-
ing, changes in other morbidity and mor-
tality possibly caused by screening and/or
treatment should also be considered. Con-
cerns of this type include surgical compli-
cations, chemotherapy toxicity, radiation
treatment–induced secondary cancers, ra-
diation dose from screening, patient anxi-
ety, and changes in patient satisfaction.

The percentage reduction in the risk of
an adverse effect from the disease being
screened for, called “relative risk reduc-
tion,” is a common measure of the ben-
efit of screening, but this measure needs
to be set in context (35). For example, if
screening reduces an individual’s risk of
dying of a particular disease over the next
decade from 1.0% to 0.4%, that is a 60%
decrease in relative risk, but only 0.6 of a
percentage point increase in the proba-
bility of surviving the decade.
In conclusion, for any health care inter-
vention, including diagnostic imaging
tests, the ultimate questions are, “How
much does this do to improve the health
of people?” and “How much does it cost
for that gain in health?” By using the
methods described in this article, we
have the ability to answer these ques-
tions as we assess the remarkable imaging
technologies available today.
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Sample Size Estimation: A
Glimpse beyond Simple
Formulas1

Small increments in the complexity of clinical studies can readily take sample size
estimation and statistical power analysis beyond the capabilities of simple math-
ematic formulas. In this article, the method of simulation is presented as a general
technique with which sample size may be calculated for complex study designs.
Applications of simulation for determining sample size requirements in studies
involving correlated data and comparisons of receiver operating characteristic
curves are discussed.
© RSNA, 2004

In a previous article in this series (1), I discussed the fundamental concepts involved in
determining the appropriate number of subjects that should be included in a clinical
investigation. This number is known as the sample size. In the earlier article (1), the
necessity for considering sample size, how certain study design characteristics affect
sample size (Fig 1), and how to calculate sample size for several simple study designs were
discussed. Also discussed was how sample size is related to statistical power, which is the
sensitivity of detecting a statistically significant difference in a comparative study when a
difference is truly present.

In this article, I will first discuss some important consequences of sample size and power
calculations, then go on to discuss issues that arise when these basic principles are applied
to real clinical investigations, which are often more complex than the simple situations
covered in the previous article and in introductory biostatistics textbooks. My intent is to
provide an overview and appreciation of some of the advanced statistical methods for
handling some of the complex situations that arise. Since advanced statistical methods for
sample size or power calculations cannot receive comprehensive treatment in the setting
of an overview article, an investigator needing such methods is advised to seek help from
a statistician early in the research project. However, I hope the material herein will at least
help bridge the knowledge gap between investigator and statistician so that their interac-
tion can be more productive.

CONSEQUENCES OF SAMPLE SIZE CALCULATIONS

Academic and Ethical Importance

In conjunction with a well-defined research question (2), an adequate sample size can
help ensure an academically interesting result, whether or not a statistically significant
difference is eventually found in the study. The investigator does not have to be overly
concerned that the study will only be interesting (and worth the expenditure of resources)
if its results are “positive.” For example, suppose a study is conducted to see if a new
imaging technique is better than the conventional one. Obviously, the study would be
interesting if a statistically significant difference was found between the two techniques.
But if no statistically significant difference is found, an adequate sample size allows the
investigator to conclude that no clinically important difference was found rather than
wonder whether an important difference is being hidden by an inadequate sample size.

An inadequate sample size also has ethical implications. If a study is not designed to
include enough individuals to adequately test the research hypothesis, then the study
unethically exposes individuals to the risks and discomfort of the research even though
there is no potential for scientific gain. Although the connection between research ethics
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and adequate sample size has been recog-
nized for at least 25 years (3), the perfor-
mance of clinical trials with inadequate
sample sizes remains widespread (4).

Practical Consequences of
Mathematic Properties

A more intuitive understanding of the
determinants of sample size can be ob-
tained through closer inspection of the
formulas for sample size. We saw in the
previous article (1) that when the out-
come variable of a comparative study is a
continuous value for which means are
compared, the appropriate sample size
(5) is given by

N !
4"2# zcrit " zpwr$

2

D2 , (1)

where N is the total sample size (ie, the
total of the two comparison groups), D is
the smallest meaningful difference be-
tween the two means being compared, "
is the SD of each group, and zcrit and zpwr
are constants determined by the specified
significance criterion (eg, .05) and de-
sired statistical power (eg, .8), respec-
tively. Since zcrit and zpwr are indepen-
dent of the properties of the data, sample
size depends only on the ratio between
the smallest meaningful difference and
the SD (Fig 2).

Furthermore, because the ratio is in an
inverse exponential relationship to sam-
ple size, anything that can be done to
decrease the SD or increase the meaning-
ful difference can substantially reduce
the required sample size. The SD could be
decreased by reducing measurement vari-
ability (eg, by using more precise instru-
ments or procedures) and/or by selecting
a more homogeneous study population.
The meaningful difference could be in-

creased by employing more sensitive in-
struments or procedures.

Another property of the comparison of
means is that for a given SD, only the
arithmetic difference between the com-
parison groups affects the sample size.
For example, the sample size would be
the same for detecting a systolic blood
pressure difference of 10 mm Hg whether
it is to be measured in normotensive in-
dividuals (eg, 110 vs 120 mm Hg) or hy-
pertensive individuals (eg, 170 vs 180
mm Hg).

When proportions are being com-
pared—a common task in clinical imag-
ing research—the sample size depends
on both the smallest meaningful differ-
ence between the proportions and the
size of the proportions themselves.
That is, when proportions are being
compared, in contrast to when means
are being compared, the sample size de-
pends not just on the difference alone.
The sample size increases dramatically
as the meaningful difference between
proportions is made smaller (Fig 3). The
sample size also increases if the two
proportions being compared (ie, the
mean of the two proportions) are close
to 0.5.

Retrospective Power Analysis

In sample size calculations, appropri-
ate values for the smallest meaningful
difference and the estimated SD are often

difficult to obtain. Therefore, the formu-
las are sometimes applied after the study
is completed, when the difference and SD
actually observed in the study can be sub-
stituted in the appropriate sample size
formula. Since sample size is also known
after the study is completed, the formula
will yield statistical power. In this case,
power refers to the sensitivity of the
study to enable detection of a statistically
significant difference of the magnitude
observed in the study. This activity,
known as retrospective power analysis, is
sometimes performed to aid in the inter-
pretation of the statistical results of a
study. If the results were not statistically
significant, the investigator might ex-
plain the result as being due to a low
power.

However, it can be shown that the ret-
rospective power—essentially an ob-
served quantity—is inversely related to
the observed P value (6). The retrospec-
tive power tends to be large in any study
with a small (statistically significant) ob-
served P value. Conversely, the retrospec-
tive power tends to be small in any study
with a large (statistically insignificant)
observed P value. Therefore, the observed
retrospective power cannot provide any
information in addition to the observed
P value (7,8). The important point is that
the smallest meaningful difference is not
the same as the observed difference: The
former must be set before the study is

Figure 1. Study design characteristics that affect sample size and
statistical power.

Figure 2. Graph shows the relationship between sample size and the
ratio of meaningful difference to SD for studies in which means are
compared. The graph was created by using Equation (1) and illus-
trates the fact that sample size increases exponentially as the ratio
decreases.
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conducted and is not determined after
the study is completed.

Even though calculating the retro-
spective power is problematic, it remains
important to consider the issue of ade-
quate sample size when one is faced
with a study whose results indicate
there is no difference between compar-
ison groups. Fortunately, several statis-
tical approaches are available to guide
the reader in terms of whether or not to
“believe” a study that yields negative
results (9). These approaches involve
calculating CIs or performing %2 tests.

USE OF SIMULATION TO
DETERMINE SAMPLE SIZE FOR
COMPLEX STUDY DESIGNS

In contrast to the importance of consid-
ering sample size and statistical power,
relatively few formulas exist for calculat-
ing them (10). The most simple formulas,
such as those discussed previously (1)
and in many introductory biostatistics
textbooks, concern the estimation and
comparison of means and proportions
and are, fortunately, applicable to many
situations in clinical radiology research.
Beyond these simple formulas, methods
have been established to determine sam-
ple size for general fixed-effect linear sta-
tistical models (of which the t test, ordi-
nary linear regression, and analysis of
variance are special cases), two-way con-

tingency tables (of which the analysis of
a 2 & 2 table with the %2 test is a special
case), correlation coefficient analysis,
and simple survival analysis (10). Ap-
proximations exist for some other sta-
tistical models, most notably logistic re-
gression, but the accuracy of these
approximations may be difficult to es-
tablish in all situations.

Thus, the list of all statistical tests for
which exact sample size calculation
methods exist is much smaller than the
list of all statistical tests. When no for-
mula exists, as often happens for moder-
ately complex statistical designs, the in-
vestigator may try to perform a sample
size analysis for a simplified version of
the study design and hope that the
sample size can be extrapolated to the
actual (more complex) study design be-
ing planned.

For situations without corresponding
formulas, it is becoming more common
to estimate sample size by using the tech-
nique of simulation (11). The simulation
approach is powerful because it can be
applied to almost any statistical model,
regardless of the model’s complexity. In
simulation, a mathematic model is used
to generate a synthetic data set simulat-
ing one that might be collected in the
study being planned. The mathematic
model contains the dependent and in-
dependent variables being measured,
along with estimates of each variable’s

SD. The synthetic data set contains the
same number of subjects as the planned
sample size.

The planned statistical analysis is per-
formed with this synthetic data set, and a
P value is determined. As usual, the null
hypothesis is rejected if the P value is less
than a certain criterion value (eg, P '
.05). This process is repeated a large num-
ber of times (perhaps hundreds or thou-
sands of times) by using the mathematic
model to generate a different synthetic
data set for each iteration. The statistical
power is equal to the percentage of these
data sets in which the null hypothesis is
rejected. In effect, simulation employs a
mathematic model to virtually repeat the
study an arbitrarily large number of
times, allowing the statistical power to be
determined essentially by direct measure-
ment.

Since a real data set would contain ran-
dom statistical error, random statistical
error must be modeled in the synthetic
data sets. To accomplish this in simula-
tion, a random-number generator is used
to add random error (“noise”) to each
synthetic data set. Because of their heavy
reliance on random-number generators,
simulation methods are also known as
Monte Carlo methods, after the city in
which random numbers also play an im-
portant role.

Let us consider a simple example. Sup-
pose we are planning a clinical study to

Figure 3. (a) Graph shows relationship between sample size and proportions being compared in a study involving comparison of proportions.
Sample size increases dramatically as the meaningful difference decreases. Sample size also increases if the proportions being compared (ie, the mean
of the two proportions) are near 0.50. (b) Extension of the circled corner of the graph in a, with x and y axes magnified; this corner corresponds
to a region that is of particular interest to the design of clinical investigations.
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compare the contrast-to-noise ratio (CNR)
between two magnetic resonance imag-
ing pulse sequences used to examine
each subject in a group of subjects. We
would like to know the statistical power
of the study to detect a smallest mean-
ingful CNR difference of 2. We would like
to plan a study with a power of .8 for
detecting this smallest meaningful differ-
ence. We have resources to comfortably
recruit and evaluate approximately 12
subjects. Suppose that from our previous
experience with the pulse sequences, we
estimate the SD of the CNR difference to
be 4.

The statistical model for this study is

CNRi ! D " (i , (2)

where CNRi is the observed CNR differ-
ence for subject i (of the 12 subjects), D is
the true CNR difference (in this example,
2), and (i is the random error associated
with the observation of subject i. To run
the simulation, we use a normally distrib-
uted random-number generator for (i
that generates a different normally dis-
tributed random number for each of the
12 observations. The mean of the num-
bers generated by the random number
generator is 0 and the SD is 4, which we
estimated on the basis of previous expe-
rience. With these 12 random numbers,
we can generate a synthetic data set of 12
observations by using Equation (2). The
simulated data set is then subjected to a t
test, and the resulting P value is recorded.

The entire simulation process is then
repeated, say, 1,000 times. The P value is
recorded after each iteration. After com-
pleting the iterations, the P values are
examined to determine what proportion
of the iterations resulted in the detection
of a statistically significant difference (in-
dicated by P ' .05); this proportion is
equal to the power. The simulation for
this example was performed with Stata
version 7.0 (Stata, College Station, Tex),
and the results are shown in the first line
of the Table. In this example, the null
hypothesis is rejected in 343 of the 1,000
iterations. Therefore, the statistical
power of the t test, given the conditions
of this example, is .34 (Table).

Obviously, it would have been easier to
use the formula for comparison of
means. But the advantage of simulation
is the ability to consider more complex
statistical models for which there are no
simple sample size formulas. This ability
is especially important because seem-
ingly small changes in study design can
cause the simple sample size formulas to
become invalid.

Returning to the example, we note that
the estimated power of our study is lower
than desired. The only way to improve
the power, given our assumptions, is to
increase the number of observations. (For
the moment, we only have resources to
study 12 subjects.) So, we decide to make
four measurements of CNR difference per
subject. This strategy will increase the
number of observations by a factor of
four and will result in an increase in
power. However, it is important to realize
that this data collection strategy is not
the same as increasing the number of
subjects by a factor of four, because the
four observations within each subject are
not independent of one another. Within
each subject, the observations are likely
to be more similar to each other than to
the observations in the other subjects. In
statistical terms, this lack of indepen-
dence is called correlation.

Because of correlation, an additional
observation in the same subject does not
provide as much additional information
as an additional observation in a differ-
ent subject. The more similar the obser-
vations within each subject are, the less
additional information will be provided
by the repeated observation. If the obser-
vations within each subject are identical
(100% correlated), then the study would
have the same results (and sample size) as
it would without the repeated observa-
tions, so there would be no benefit from
repeating the measurement for the same
subjects. Conversely, if the repeated ob-
servations within each subject were com-
pletely uncorrelated (0% correlation),
then the results (and sample size) would
be identical to those of a study with the
same total number of observations but
with enough additional subjects that
only one observation per subject is used.

Simulation can easily account for the
correlation of the four observations
within each subject. The statistical model
used is a slight variation of Equation (2):

CNRij ! D " (ij, (3)

where CNRij is the observed CNR for sub-
ject i (of the 12 subjects) and repetition j
(of the four repetitions), D is the true
CNR difference, and (ij is the random er-
ror associated with each of the 48 obser-
vations. As in Equation (2), (ij is gener-
ated by a normally distributed random-
number generator having a mean of 0
and an SD of 4. In Equation (3), however,
(ij is calculated in such a way that each
error term (ij is correlated with the other
error terms within the same subject. Cor-
relation of the error terms is the math-
ematic mechanism for generating corre-
lation in the observations. The amount
of correlation is indicated by the correla-
tion coefficient ). In this example, we
assume a moderate amount of correla-
tion () ! 0.5) between observations made
within each subject. The results of the
simulation are shown in the Table.

With an ordinary t test, there appears
to be enough power in the proposed
study design (Table). But an ordinary t
test is inappropriate in this case because
it treats each of the 48 observations as
independent, ignoring the correlation
between the four observations within
each subject. An appropriate method
that accounts for correlation is linear re-
gression with an adjustment for cluster-
ing. When this type of linear regression is
applied instead of the t test, the simula-
tion reveals that the power is actually .5
(Table), which is lower than the desired
power of .8. Results of further simula-
tions indicate that increasing the number
of subjects from 12 to 22 would result in
adequate power (Table).

A discussion of statistical tests that ad-
just for correlation within subjects is be-
yond the scope of this article. However,
without a simple formula for sample size,
and even without extensive knowledge
of the statistical test to be used, simula-
tion still enabled the accurate determina-

Results of Simulations of Hypothetical Study in Which Difference between Two
Imaging Techniques Is Being Compared within Each Subject

No. of
Subjects

No. of
Observations
per Subject

Correlation
between

Observations
within Each

Subject
Statistical

Test

No. of
Simulated
Data Sets

No. of
Statistically
Significant

Results

Power of
Statistical

Test

12 1 0.0 t Test 1,000 343 .34
12 4 0.5 t Test* 1,000 846 .85
12 4 0.5 Regression† 1,000 528 .53
22 4 0.5 Regression† 1,000 829 .83

* Not the appropriate statistical test for these data, but done for purposes of illustration.
† Linear regression with adjustment for clustering by subjects.
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tion of power in the preceding example;
this demonstrates the utility and gener-
alizability of simulation. In addition, the
effects of the use of potentially inappro-
priate statistical analyses were also able to
be examined.

One of the barriers to performing sim-
ulation is the requirement of iterative
computation, which in turn requires fast
computers. This barrier is becoming
much less important as the speed of com-
monly available computers continues to
increase. Even when the barrier of com-
putational speed is overcome, simulation
is successful only if the assumed statisti-
cal model accurately describes the study
design being evaluated. Therefore, appro-
priate attention must be paid to estab-
lishing the model’s validity. Fortunately,
it is often easier to develop a mathematic
model for a statistical situation (from
which it is a straightforward process to
determine power and sample size with
simulation) than to search for a specific
method or formula, if one even exists, for
calculating sample size. In the preceding
example, the introduction of correlation
substantially increased the complexity of
the analysis from a statistical point of
view but caused only a minor change in
the mathematic model and the subse-
quent simulation.

SAMPLE SIZE CALCULATIONS
FOR READER STUDIES

A reader study involving the calculation
of receiver operating characteristic (ROC)

curves is another kind of study design
that is fairly common in radiology and
for which sample size and statistical
power are difficult to determine. The area
under the ROC curve (Az) is commonly
used as an indicator of the accuracy of a
diagnostic test. A typical ROC study in-
volves multiple readers interpreting im-
ages obtained in the same group of sub-
jects who have all undergone imaging
with two or more imaging techniques or
conditions. The purpose of the study is to
compare the imaging techniques. The
difficulty in determining sample size and
statistical power is a result of the fairly
complicated computational process re-
quired to calculate Az and the compli-
cated correlations among the observa-
tions. In such a study, each reader
generates multiple observations, and,
likewise, each subject has a part in mul-
tiple observations. Therefore, correlation
can occur simultaneously among the ob-
servations (readings) within the same
reader and among the observations
within the same subject.

One approach to sample size analysis
in complex ROC studies involves an ap-
proximation performed by using the F
distribution (12,13). Sample size tables
created by using this method have been
published (14); this method can also be
used to calculate sample sizes for situa-
tions not addressed by such tables (Ap-
pendix). The method may be used to ex-
amine the trade-off between sample size,
smallest meaningful difference, and
number of readers (Fig 4). For most clin-

ical investigations, it is likely to be diffi-
cult to include more than 10 readers or
100 cases. Given these constraints, we see
that any ROC study will require at least
four readers, even with a large meaning-
ful difference of 0.15 in Az. At the other
extreme, the smallest meaningful differ-
ence in Az that can be detected with 10
readers and 100 cases is 0.07. These two
generalizations are based on many as-
sumptions (Fig 4). More cases or readers
are required if the interobserver variabil-
ity or intraobserver variability is higher
than assumed. Fewer cases or readers are
required if the average Az (ie, accuracy of
the readers) is higher than assumed.

Another major method for analyzing
data from an ROC study with multiple
readers and multiple cases is the jack-
knifed pseudovalue method (15). In this
method, the data are mathematically
transformed into pseudovalues that can
be analyzed by using a relatively straight-
forward analysis of variance. Reducing
the problem of ROC analysis to a more
manageable analysis of variance is a
strength of the pseudovalue method. A
disadvantage is the lack of exact, or even
approximate, formulas for determining
sample size and statistical power. The
performance and validity of the pseudo-
value method have been examined with
simulations (16,17), so simulation could
also provide a viable method for deter-
mining sample size and power for the
pseudovalue method.

CONCLUSION

In contrast to the wide variety of statisti-
cal tools available to the clinical investi-
gator, relatively few formulas exist for the
exact calculation of the sample size and
statistical power of a given study design.
As demonstrated by the example of cor-
related data, a frequent occurrence in
clinical research, it is relatively easy to
construct a study design for which no
simple formula exists. The availability of
fast computers makes the iterative pro-
cess of simulation a viable general
method for performing sample size and
power analysis for complex study de-
signs.

At first glance, simulation may appear
artificial and therefore suspicious because
it relies on an equation and many as-
sumptions about the terms in the equa-
tion, particularly the terms related to the
variability of the components of the
model. It should be noted, however, that
similar (although perhaps less complex)
mathematic models are the foundation

Figure 4. Graph shows the relationship between sample size, small-
est meaningful difference, and number of readers in an ROC study in
which Az is used as the index of accuracy. Sample sizes were calculated
by using the method described in the Appendix. The values used for
all variables except J and * are the same as those in the example in
Table A1.
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of most statistical analyses—even simple
ones like comparing means with a t test.
Furthermore, estimates of variance are
also required in sample size and power
analysis for simple analyses like the t test.
The reason for the large number of as-
sumptions in simulations has more to do
with the complexity of the data set being
simulated than the method of simulation
itself.

In addition to the factors usually men-
tioned as affecting sample size, correla-
tion among observations within groups
due to nonindependent sampling can
also increase sample size and decrease
statistical power. Therefore, when plan-
ning the sample size, one should take
care to account for potential correlation
in the data set.

APPENDIX

Although tables for the determination of
sample size in ROC studies are available
(14), a practical presentation of the equa-

tions underlying these tables may be help-
ful for situations not addressed by the pub-
lished tables. The equations necessary for
calculating sample size in an ROC study
that involves a number of readers interpret-
ing images obtained in the same group of
subjects who have all undergone imaging
with two techniques are as follows (13,14):

"c
2 !

J*2

2+
# "b

2#1 # rb$ #
"w

2

K
#1 # r1$ " # J # 1$#r2 # r3$

, (A1)

A ! ,-1#. $ ! 1.414, (A2)

Npos !

0.0099e-A2/ 2!#5A2 " 8$ "
A2 " 8

R "
"c

2 ,

(A3)

and

N ! Npos#1 " R$. (A4)

Note that Equations (A1) and (A3) have
been algebraically rearranged from their
published form to isolate the dependent

variables for more convenient calculation.
All symbols are defined in Table A1. To cal-
culate sample size with these equations, first
assign values to the variables in the first
section of Table A1, then sequentially sub-
stitute the values into Equations (A1)–(A4),
using the suggested values of the variables
in the second section of Table A1 and values
from Tables A2 and A3 where indicated.

For example, Table A1 shows all the val-
ues involved in the calculation of sample
size for a study that includes four readers
and is designed to examine the Az differ-
ence between two imaging techniques. On
the basis of preliminary study results, the
expected average Az (.) of the two tech-
niques is 0.75. The smallest meaningful dif-
ference (*) between the Az values for the
two techniques is set to 0.15. Each reader
interprets each case once (K ! 1), and the
study involves an equal number of positive
and negative cases (R ! 1). The difference in
Az (wb) between the most accurate and least
accurate observers is estimated to be 0.05.
The values for ww, r1, r2, r3, and rb given in
Table A1 are those suggested by published

TABLE A1
Definition of Variables in Calculation of Sample Size for ROC Study in Which a Number of Readers Interpret Same Set of
Cases Obtained by Using Two Different Imaging Techniques

Variable Definition Example*

Main design variables
J Number of readers 4
* Smallest meaningful difference between Az values associated with the two imaging techniques 0.15
wb Interobserver variability expressed as expected difference between Az of most accurate observer in

study and Az of least accurate observer
0.05

K Number of times each case is read by each reader for each imaging technique, typically equal to 1 1
. Expected average Az for the two imaging techniques 0.75
R Ratio of number of negative cases to number of positive cases in study, often equal to 1 1

Variables with
suggested values

ww Intraobserver variability expressed as expected difference between Az values of observer who
interprets the same images obtained with the same imaging technique on two different occasions;
suggested value is 0.5 ! wb (14)

0.025

r1 Correlation between Az values estimated for the same subjects by the same observer with different
imaging techniques; an average value of 0.47 is suggested (14)

0.47

r2 Correlation between Az values estimated for the same subjects by different observers with the same
imaging technique; a value of 0 is suggested for r2 - r3 (14)

0

r3 Correlation between Az values estimated for the same subjects by different observers with different
imaging techniques; a value of 0 is suggested for r2 - r3 (14)

0

rb Correlation between Az values estimated for the same subjects by the group of observers with
different imaging techniques; a value of 0.8 is suggested (14)

0.8

Calculated or assigned
variables

+ Noncentrality parameter of a noncentral F distribution with 1 degree of freedom associated with the
numerator and J - 1 degrees of freedom associated with the denominator; the values are given in
Table A2

18.11

$b
2 Interobserver variability expressed as a variance; $b

2 ! wb ! m, where m is a multiplier that converts
range into variance and is obtained from Table A3 for n ! J

0.05 ! 0.486

$w
2 Intraobserver variability expressed as a variance; $w

2 ! ww ! m, where m is a multiplier that converts
range into variance and is obtained from Table A3 for n ! 2

0.025 ! 0.886

$c
2 Variance between subjects, calculated from Equation (A1) 0.003540

,-1() Inverse cumulative normal distribution function, equivalent to NORMSINV() function in Microsoft
Excel (Microsoft, Redmond, Wash)

Npos Number of positive cases in the study 38
N Total number of cases (positive / negative) in the study—that is, the sample size of cases 76

* See Appendix for description of example values.
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reports (14). The calculated sample size (N)
is 76.
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TABLE A2
Noncentrality Parameter (!) of the Noncentral F Distribution Corresponding to
a Significance Criterion (") of .05 and a Power of .8

Numerator Degrees
of Freedom

Denominator Degrees of
Freedom Noncentrality Parameter (+)*

1 1 266.80
1 2 31.96
1 3 18.11
1 4 14.15
1 5 12.35
1 6 11.34
1 7 10.69
1 8 10.25
1 9 9.92
1 10 9.67
1 11 9.48
1 12 9.32
1 13 9.19
1 14 9.08
1 15 8.99
1 16 8.91
1 17 8.84
1 18 8.78
1 19 8.72

Note.—The noncentral F distribution is a generalized form of the F distribution and contains a ratio
of two %2 distributions (18). Each of the two component %2 distributions (in the numerator and
denominator) are associated with a respective degrees of freedom parameter of the F distribution.
The degrees of freedom signify the number of independent units of information relevant to the
calculation of a statistic (19), in this case the component %2 distributions.

* Calculated by iteration, with Lenth (20) implementation of the noncentral F distribution
function.

TABLE A3
Multiplier for Converting the Range
of a Set of Observations into an
Estimate of the Variance

No. of Observations (n) Multiplier (m)

2 0.886
3 0.591
4 0.486
5 0.430
6 0.395
7 0.370
8 0.351
9 0.337

10 0.325
11 0.315
12 0.307
13 0.300
14 0.294
15 0.288
16 0.283
17 0.279
18 0.275
19 0.271
20 0.268

Note.—Revised and adapted, with permis-
sion, from reference 21.

612 ! Radiology ! March 2004 Eng

R
a

d
io

lo
gy



Kimberly E. Applegate, MD, MS
Philip E. Crewson, PhD

Statistical Literacy1

One should not go hunting for buried
treasure, because buried treasure is found
at random, and, by definition, one cannot
go searching for something which is found
at random.

Attributed to the Talmud;
cited by Salsburg (1)

With this issue of Radiology, the Statisti-
cal Concepts Series of articles reaches its
conclusion. We take this opportunity to
thank each of the talented authors for
sharing with us their expertise and pa-
tience. It takes considerable skill to trans-
late complex concepts into a format under-
standable to a wide audience. Without
their efforts and considerable time com-
mitment, this series would not have been
possible. Thank you.

In the current issue of Radiology, the
17th article in the series, by Dr Eng (2),
provides an example of how we can use
advanced statistical modeling to under-
stand and predict what may work in ra-
diology research (2,3). While this final
article is complex, its sophistication pro-
vides a window into a world we radiolo-
gists rarely visit. The articles that pre-
ceded this final article were designed to
provide readers of Radiology with an un-

derstanding of the basic concepts of sta-
tistics, probability, and scientific meth-
ods that are used in the medical literature
(4). Because the Accreditation Council
for Graduate Medical Education now re-
quires of residents a basic grasp of statis-
tical concepts as a component of the six
core competencies (5), one must have a
sound understanding of the methods
and results presented in today’s medical
literature, whether one is a resident or
seasoned radiologist.

We are all consumers of information.
Statistics allow us to organize and objec-
tively evaluate empiric evidence that can
ultimately lead to improved patient care.

Nearly all readers of the radiology lit-
erature know that understanding study
results and determining their applicabil-
ity to practice requires an understanding
of statistical issues. The articles that com-
pose the Statistical Concept Series in Ra-
diology are meant to increase understand-
ing of the statistics commonly used in
radiology research.

Statistical methods revolutionized sci-
ence in the 20th century (1). Statistical
concepts have become an essential aspect
of scientific inquiry and even of our com-
mon culture. The influence on society is
evidenced by the use of statistics in the
lay press and media; the use of terms
such as probability and correlation in ev-
eryday language; and the willingness to
collect data, accept scientific conclu-
sions, and set public policy on the basis
of averages and estimates (1).

In just over 1 century, statistics have
altered our view of science. Together
with the rapid evolution of computer ca-
pabilities, there are many new statistical
methods on the horizon. Recent trends
in medical statistics include the use of
meta-analysis and clustered-data analysis
(6). In addition, some statistical meth-
ods, formerly uncommon in medical re-
search, are quickly becoming embedded
in our literature. These include the boot-
strap method, Gibbs sampler, generalized
additive models, classification and regres-

sion trees, models for longitudinal data
(general estimating equations), hierar-
chic models, and neural networks (6). Re-
gardless of the sophistication of a tech-
nique, to take full advantage of their
potential it is necessary to understand
fundamental statistical methods. The
challenge for physicians is to develop
and maintain statistical “literacy,” in ad-
dition to the scientific literacy of radiol-
ogy and medicine.

We define a functional level of statisti-
cal literacy as that which includes an un-
derstanding of methods, the effect of sta-
tistics on research design and analysis,
and a basic vocabulary of statistical terms
(7).

As a profession, how can we encourage
statistical literacy? First, we must educate
ourselves by requiring the teaching of
medical statistics in medical school and
residency training; Second, we should
encourage the development of consensus
guidelines on the proper reporting of sci-
entific research—for example, the CON-
SORT (Consolidated Standards of Report-
ing Trials) statement (8) for reporting
results of randomized controlled trials,
the QUOROM (Quality of Reporting of
Meta-analyses) statement (9) for report-
ing results of meta-analyses and system-
atic reviews, and the STARD (Standards
for Reporting of Diagnostic Accuracy)
statement (10) for reporting results of di-
agnostic accuracy studies. Some journals
have published statistical guidelines for
contributors to medical journals (11),
while others have statistical checklists for
manuscript reviewers. In January 2001,
Radiology became the first American radi-
ology journal to provide statistical review
of all published manuscripts that contain
statistical content, to the benefit of both
authors and readers (12). Third, we
should continue to promote the learning
of critical thinking skills and research
methodology at our national meetings,
such as the seminars held at the 2002
Radiological Society of North America
and the 2003 Association of University
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Radiologists annual meetings. Fourth, we
must continue to promote the value of
scientifically rigorous reports, relative to
that of less scientific ones, through our
national organizations, the program con-
tent at our scientific meetings, and the
support of these concepts through writ-
ten and oral announcements by our lead-
ership.

The goal of the Statistical Concept Se-
ries was to enhance the ability of radiol-
ogists to evaluate the literature compe-
tently and critically, not to make them
statisticians. When contemplating the
value of such a basic understanding of
statistics, consider that Bland (13) argued
that “bad statistics leads to bad research
and bad research is unethical.” We must
beware of translating bad research into
bad medicine and recognize that we have
an essential role in increasing the evi-

dence base of medical practice. Such an
understanding is perhaps one of the most
useful things that radiologists must learn.
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