

- Screening differs from diagnostic testing
- Potential effectiveness depends on the natural history of disease and treatment effectiveness
- RCT is most valid design, but has limitations
- Survival statistics are inappropriate and biased
- Once a test is shown to reduce mortality, important to measure and weigh benefits vs. harms
- Decision modeling can be used to extrapolate study results to help inform public policy

Screening vs Screening • Healthy individuals • Asymptomatic • Low prevalence of disease, many people tested	 S. Diagnosis Diagnosis Patients, ill individuals Symptomatic High prevalence of disease, few people tested
 Test non-diagnostic: separates groups into high/low risk of disease 	 Test diagnostic
• Test is noninvasive, low risk, not time consuming, inexpensive	 Test may be invasive, higher risk, time less of a consideration, costly
Burden of proof for effectiveness i than for diagnostic & t	is higher for screening interventions treatment interventions 6

- Screening differs from diagnostic testing
- Potential effectiveness depends on the natural history of disease and treatment effectiveness
- RCT is most valid design, but has limitations
- · Survival statistics are inappropriate and biased
- Once a test is shown to reduce mortality, important to measure and weigh benefits vs. harms
- Decision modeling can be used to extrapolate study results to help inform public policy

7

Critical Point

The point in the natural history of disease before which therapy is more effective.

For screening to be effective, the critical point must occur within the detectable preclinical phase.

- Survival time increased by lead time, even if screening ineffective
- Length bias
 - Less aggressive tumors more likely to be screen detected
- Overdiagnosis bias
 - Diagnosis of disease that would never harm an individual

All favor screening!

Effects of Overdiagnosis on Screening Performance

Underlying Truth

		Disease	No Disease
Result	Test +	True Positive (TP)	False Positive (FP)
Test	Test -	False Negative (FN)	True Negative (TN)

Detection rate = (TP+O)/N Sensitivity = (TP+O)/(TP+O+FN) PPV = (TP+O)/(TP+FP-O)

Specificity = TN/(TN+FP-O) NPV = TN/(TN+FN)

19

	Effe	ects of Ove Po Under	rdiagnosis erformance lying Truth (ne	on Screeniı e o overdx)	ng
		Disease	No Disease		
sult	Test +	90	180	270	
ST KE	Test -	10	720	730	
Ie		100	900	1000	

Detection rate = 90/1000 Sensitivity = 90/100 = 90% PPV = 90/270 = 33%

Specificity = 720/900 = 80% NPV = 720/730 = 97%

	Effects of Overdiagnosis on Screenin Performance					
		Disease	No Disease			
sult	Test +	90	50 + 130	270		
st Re	Test -	10	720	730		
Te		100	900	1000		
Deteo Sensi PPV =	Detection rate = Sensitivity = Specificity = PPV = NPV =					

Effects of Overdiagnosis on Screening Performance Underlying Truth (50 cases overdx)					g
		Disease	No Disease		
st Result	Test +	140	130	270	
	Test -	10	720	730	
Te		150	850	1000	
Т		150	850	1000	

	Effe	cts of Ove Po Underlying	rdiagnosis erformance Truth (50 cas	on Screenin e es overdx)
		Disease	No Disease	
sult	Test +	140	130	270
st Re	Test -	10	720	730
Te		150	850	1000

Detection rate = 140/1000
Sensitivity = 140/150 = 93%
PPV = 140/270 = 52%

↑Specificity = 720/850 = 85% NPV = 720/730 = 97%

23

- Screening differs from diagnostic testing
- Potential effectiveness depends on the natural history of disease and treatment effectiveness
- RCT is most valid design, but has limitations
- Survival statistics are inappropriate and biased
- Once a test is shown to reduce mortality, important to measure and weigh benefits vs. harms
- Decision modeling can be used to extrapolate study results to help inform public policy

25

25

Potential limitations

- No clinical signs or symptoms of disease
 - May need large sample sizes
 - Higher risk or symptomatic individuals may differentially volunteer
- Screen individuals at higher risk for disease?
 - Screening higher risk population reduces RCT sample size
 - Limits generalizability to average-risk individuals
- Willing and able to:
 - Accept randomization, for all rounds in full study
 - Undergo workup and treatment per protocol
 - Be followed for outcomes

Endpoints/Outcomes

- Comparisons of survival are invalid and biased!
 - Lead time bias, length bias, overdiagnosis bias
- Disease-specific mortality
 - Most widely used & accepted
 - Assumes cause of death can be determined accurately and screening doesn't increase risk of dying from other causes

29

All cause mortality =>

Results: National Lung Screening Trial

Adherence >90%

Low Dose CI	X-Ray	
24.2%	6.9%	
23.3%	6.5%	
645	572	
247	309	
20% (95% CI 6.8%	5 to 26.7%, p=0.004)	
6.7% (95% Cl 1.2% to 13.6%, p=0.02)		
3.2%	(p=0.28)	
	24.2% 23.3% 645 247 20% (95% CI 6.8% 6.7% (95% CI 1.29 3.2%	

35

Results: National Lung Screening Trial

Adherence >90%

24.2%	6.9%	
	0.070	
23.3%	6.5%	
645	572	
247	309	
20% (95% Cl 6.8% to 26.7%, p=0.004)		
6.7% (95% CI 1.2% to 13.6%, p=0.02)		
3.2% (p=0.28)		
	645 247 (95% CI 6.8% 6 (95% CI 1.2% 3.2% (

Results: National Lung Screening Trial

Adherence >90%

6.9%		
6.5%		
572		
309		
8% to 26.7%, p=0.004)		
6.7% (95% Cl 1.2% to 13.6%, p=0.02)		
3.2% (p=0.28)		

37

Results: National Lung Screening Trial

Adherence >90%

24.2%	6.9%	
23.3%	6.5%	
645	572	
247	309	
20% (95% CI 6.8% to 26.7%, p=0.004)		
6.7% (95% Cl 1.2% to 13.6%, p=0.02)		
3.2% (p=0.28)		
	23.3% 645 247 % (95% CI 6.8% 7% (95% CI 1.29 3.2%	

38

JAMA Internal Medicine | Original Investigation

Performance of Screening Ultrasonography as an Adjunct to Screening Mammography in Women Across the Spectrum of Breast Cancer Risk

Janie M. Lee, MD, MSc; Robert F. Arao, MPH; Brian L. Sprague, PhD; Karla Kerlikowske, MD; Constance D. Lehman, MD, PhD; Robert A. Smith, PhD; Louise M. Henderson, PhD; Garth H. Rauscher, PhD; Diana L. Mgdioretti, PhD

- Observational cohort study
- 6,081 Screening mammography + same day US exams compared with screening mammography alone
- But women receiving mammo + US were
 - Younger, white non-Hispanic
 - Have dense breasts, family history, higher 5-yr risk

JAMA Intern Med. 2019;179(5):658-667

- Screening differs from diagnostic testing
- Potential effectiveness depends on the natural history of disease and treatment effectiveness
- RCT is most valid design, but has limitations
- Survival statistics are inappropriate and biased
- Once a test is shown to reduce mortality, important to measure and weigh benefits vs. harms
- Decision modeling can be used to extrapolate study results to help inform public policy

43

43

- Screening differs from diagnostic testing
- Potential effectiveness depends on the natural history of disease and treatment effectiveness
- Survival statistics are inappropriate and biased
- RCT is most valid design, but has limitations
- Once a test is shown to reduce mortality, important to measure and weigh benefits vs. harms
- Decision modeling can be used to extrapolate study results to help inform public policy

47

