

Learning Objectives

- Describe how decision analysis may improve clinical decision making
- Review cost-effective analysis as a specific type of decision analysis and illustrative example
- Discuss cost-effectiveness analysis in the context of resource allocation decision-making

How to define the benefit of a diagnostic test?			
Levels of Clinical Efficacy			
1. Technical	"How good is the image?"		
2. Diagnostic accuracy	"Can you tell normal from abnormal?"		
3. Diagnostic thinking	"Is the patient more/less likely to have disease?"		
4. Therapeutic	"Has clinical management changed?"		
5. Patient Outcome	"Has length or quality of life improved?"		
6. Societal	"Is this worth doing? Is it cost-effective?"		
	Fryback DG and Thornbury JR. Med Decis Making 1991; 11: 88-94.		
5			

How to define the	How to define the benefit of a diagnostic test?		
	c		
	of Clinical Efficiency		
Leveis	<u>or Clinical Ellicacy</u>		
1. Technical	"How good is the image?"		
2. Diagnostic accuracy	"Can you tell normal from abnormal?"		
3. Diagnostic thinking	"Is the patient more/less likely to have disease?"		
4. Therapeutic	"Has clinical management changed?"		
5. Patient Outcome	"Has length or quality of life improved?"		
6. Societal	"Is this worth doing? Is it cost-effective?"		

Fryback DG and Thornbury JR. Med Decis Making 1991; 11: 88-94.

- Implicit acknowledgment
 - Resources are limited
 - Resources are being allocated

Clinical Decision Making

Life is short; the Art is long; opportunity fleeting; experience delusive; *judgment difficult.*

--Hippocrates

Useful tools for	
Synthesizing evidence	Table 1. Breast Cancer Screening Strategies*
 Estimating long term 	No screening
outcomes and magnitude of	Screen from age 40 to 69 y
potential name	Scelen from age: 40 to 79 y
 Based on currently available data 	Screen from age 45 to 69 y
	Screen from age 50 to 69 y
	Screen from age 50 to 74 y
What-if analyses	Screen from age 50 to 84 y
 When a definitive RCT is not 	Screen from age 55 to 69 γ
feasible	Screen from age 60 to 69 y
 i.e. Comparing 20 different screening strategies head to head 	
	Mandalblatt at al. Ann int Mad 2000; 151; 7

Background

- Randomized trial of use of DBT compared to DM for routine screening in progress (TMIST)
 - · Long-term results will not be available for many years
- Opportunity to use modeling to predict long-term impact of transition from DM to DBT for routine screening

Study Overview - Approach

- · Federal payer perspective and lifetime horizon
- Health care costs and benefits (QALYs) discounted 3% annually
- Secondary analyses: Higher sensitivity of DBT (4% higher than DM)
- Multi-way sensitivity analyses to explore implications of varying key parameters

Skaane et al. Breast Cancer Res Treat 2018

	DM	DBT		
QALYs	14,912-15,756	14,914-15,757		
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.57-\$5.03		
		*Results are per 1,000 simulated U.S. women ages 40-80 in the year 2011, followed for their lifetimes. Costs and QALYs are discounted at a rate of 3% annually beginning in 2018.		

Results: Base Case across 3 models *

	DM	DBT
QALYs	14,912-15,756	14,914-15,757
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.57-\$5.03
∆ QALYs		1.65-2.18

Results: Base Case across 3 models *

	DM	DBT
QALYs	14,912-15,756	14,914-15,757
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.57-\$5.03
Δ QALYs		1.65-2.18
Δ Costs		\$400,000-\$430,000

*Results are per 1,000 simulated U.S. women ages 40-80 in the year 2011, followed for their lifetimes. Costs and QALYs are discounted at a rate of 3% annually beginning in 2018.

31

Results: Base Case across 3 models*

	DM	DBT
QALYs	14,912-15,756	14,914-15,757
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.57-\$5.03
∆ QALYs		1.65-2.18
Δ Costs		\$400,000-\$430,000
ICER (\$/QALY)		\$195,026-\$270,135

What if DBT Sensitivity was higher?*		
OAL Ys	14 912-15 756	14 914-15 759
*Results are per 1,000 sin followed for their lifetimes annually beginning in 201	mulated U.S. women ages 5. Costs and QALYs are c 18.	s 40-80 in the year 2011, discounted at a rate of 3%

What if: DBT Sensitivity was higher?*

	DM	DBT (†4% Sensitivity)
QALYs	14,912-15,756	14,914-15,759
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.56-\$5.03

What if: DBT Sensitivity was higher?*

	DM	DBT (†4% Sensitivity)
QALYs	14,912-15,756	14,914-15,759
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.56-\$5.03
∆ QALYs		2.46-3.23

*Results are per 1,000 simulated U.S. women ages 40-80 in the year 2011, followed for their lifetimes. Costs and QALYs are discounted at a rate of 3% annually beginning in 2018.

35

What if: DBT Sensitivity was higher?*

	DM	DBT (†4% Sensitivity)
QALYs	14,912-15,756	14,914-15,759
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.56-\$5.03
Δ QALYs		2.46-3.23
Δ Costs		\$390,000-\$420,000

What if: DBT Sensitivity was better? *

	DM	DBT (†4% Sensitivity)
QALYs	14,912-15,756	14,914-15,759
Costs (\$1 million USD)	\$4.18-\$4.60	\$4.56-\$5.03
∆ QALYs		2.46-3.23
Δ Costs		\$390,000-\$420,000
ICER (\$/QALY)		\$130,533-\$156,624

*Results are per 1,000 simulated U.S. women ages 40-80 in the year 2011, followed for their lifetimes. Costs and QALYs are discounted at a rate of 3% annually beginning in 2018.

Other Outcomes*

	DM	DBT	Δ
Breast Cancer Deaths	12.42-17.08	12.41-16.87	0.00 to 0.21
Life Years	26,258-28,035	26,239-28,035	-0.16 to 1.58
False Positive Screens	911-1,034	657-767	-237 to -268

 * Undiscounted outcomes per 1,000 simulated U.S. women ages 40-80 in the year 2011, followed for their lifetimes.

	DM	DBT	Δ
Breast Cancer Deaths	12.42-17.08	12.41-16.87	0.00 to 0.21
Life Years	26,258-28,035	26,239-28,035	-0.16 to 1.58
Eclas Desitivo Sersona	011 1 034	657-767	-237 to -268
	911-1,034	001-101	-201 10 -200

Implications

- · Costs incurred are high relative to projected benefits
 - Primary benefit of DBT is reduction of FP exams
 - Impact on mortality is likely small
- DBT screening could be cost-effective at lower costs

43

