

Example

Suppose you want to compare the accuracy of contrast-enhanced mammography (CEM) and abbreviated breast MRI (AB-MRI)...

9

Choice of Study Objective:

#1: To show that AB-MRI is better than CEM.

What aspect of performance is being evaluated?

#4: To show that <u>board-certified</u> <u>mammographers</u> interpreting AB-MRIs of <u>high-risk women</u> have better breast-level sensitivity and specificity than when interpreting CEM.

State the objective in a detached way.

choice of Lindpoints					
 Should be appropriate for development phase 					
	parameter	Accuracy	effect on patient care decisions	outcome	society
Discovery	yes	yes			
Introduction		yes	yes		
Mature		yes	yes	yes	
		yes		yes	yes
	1	yes		yes	yes

Breast Imaging Example Reference Standard

- Breast cancer defined by combination of biopsy results within 365 days of the imaging tests and clinical follow-up at 1 year
 - Includes interview with participant and medical record review.

41

Colon CT Study Example Re-Reading Images for Endpoints

Cross-Over Design

19 readers interpreted images in 4 reading sessions:

- Session 1: 50 cases without AI
- Session 2: 50 cases with AI
- One month wash-out
- Session 3: first 50 cases with AI
- Session 4: second 50 cases without AI

47

Colon CT Study Example Endpoint Definitions

Primary Analysis: (segment-level) True Positive: reader must correctly locate at least one polyp in segment

Secondary Analysis: (patient-level)

True Positive: reader must correctly locate at least one polyp in patient

Stratified Randomization in the Thai						
1	73	75	148			
2	30	30	60			
3	46	46	92			
4	41	39	80			

Block randomization within strata with varying block sizes

Why did the investigators recruit patients from 4 diverse sites?

Stopping Rules

- Formal statistical rules
 - Control trials' operating characteristics
- In design phase, set up stopping rules that control "multiplicity problem" (Type I error).

- If there is no benefit, test statistic randomly fluctuates near zero.
- If you calculate test statistic often, you will find instances when it is far from zero just by chance.

Conclusion

- Studies of diagnostic tests are important, nationally recognized.
- Many possible study designs for imaging studies
- Details of the study design determine its worth
- This week take time to carefully consider details of your study's design
- □ Listen to other students deliberate their designs