

J

OVERVIEW OF THERAPEUTIC INTERVENTION TRIALS LECTURES

- BASICS OF CLINICAL TRIAL DESIGN SPIES
- DEVELOPING A THERAPEUTIC TRIAL PROTOCOL SHIELDS
- MEASURING OUTCOMES FROM THERAPY TRIALS SOULEN

3

LEARNING OBJECTIVES

- Understand basic designs of therapy trials
- UNDERSTAND OPTIONS FOR PATIENT SELECTION
- Understand methods to manage sample size with interim analyses and adaptive trial designs
- Understand elements of internal and external validity

BASIC QUESTION IN THERAPY TRIALS

- PICO ACRONYM
 - IN A SPECIFIED POPULATION (P)
 - THE INTERVENTION OF INTEREST (I)
 - COMPARISON (STANDARD INTERVENTION) (C)
 - OUTCOME (O)
 - TIMING (T)
 - SETTING (S)

5

BASIC CONSIDERATIONS IN STUDY DESIGN

- Patient selection
 - SOURCE POPULATION
 - Inclusion and exclusion criteria
- Defining Intervention and Comparator
- Patient allocation method
- DEFINING AND MEASURING OUTCOME CLINICAL AND IMAGING
 - PRIMARY OUTCOME MEASURE
 - SECONDARY OUTCOME MEASURES
 - ADVERSE EVENT RECORDING
- Sample Size Calculation and analysis plan

NON-RANDOMIZED DESIGN

CASE SERIES

- RETROSPECTIVE CASE SERIES
 - DATA INCOMPLETE, CASE INCLUSION BIAS, NO CONTROLS
- PROSPECTIVE CASE SERIES WITH HISTORICAL CONTROLS
 - SUBJECT TO SELECTION BIAS IN CONTROLS
- CASE SERIES WITH BEFORE AND AFTER WITHIN SUBJECT CONTROL
 - CANNOT ASSESS PLACEBO EFFECT AND ANY IMPROVEMENT THAT WOULD OCCUR WITHOUT INTERVENTION.
- ALL APPROACHES HAVE MULTIPLE OPPORTUNITIES FOR INTRODUCTION OF BIAS

7

NON-RANDOMIZED DESIGN

NON-RANDOMIZED COMPARATIVE PROSPECTIVE STUDIES

- IMPROVED OPPORTUNITY FOR PARALLEL ASSESSMENT OF SUBJECTS AND CONTEMPORANEOUS CONTROLS.
- DATA DEFINITIONS AND COLLECTION CAN BE MORE COMPLETE
- CAN COMPARE SUBJECTS AND CONTROLS FOR SIMILARITIES.
- SELECTION BIAS STILL KEY PROBLEM.
- ASSESSORS, PATIENTS USUALLY NOT BLINDED.
- Can use Propensity-matching or propensity weighting, which potentially reduce bias in assessing outcomes

RANDOMIZED CLINICAL TRIALS

- GOLD STANDARD FOR ASSESSMENT OF CLINICAL EFFICACY
- TWO PRIMARY BENEFITS
 - CONTROLS SELECTION BIAS
 - BEST MEANS OF ASSIGNING THE KNOWN AND UNKNOWN POTENTIAL CONFOUNDERS IN EACH ARM.
- ALLOWS FOR APPROPRIATE APPLICATION OF STATISTICAL MODELS.

9

INTERNAL AND EXTERNAL VALIDITY

- INTERNAL VALIDITY
 - DID THE STUDY AS EXECUTED ANSWER THE QUESTION THE STUDY WAS INTENDED TO ANSWER?
 - KEY ISSUE IS CONTROLLING BIAS THAT MIGHT BE INTRODUCED DURING CONDUCT OF THE STUDY
- EXTERNAL VALIDITY
 - THE EXTENT TO WHICH THE STUDY'S RESULTS WOULD BE BE REFLECTED IN OUTCOMES IN THE BROADER POPULATION
 - Key issue is the study population and how it compares to the general population

INTERNAL VALIDITY

- DETERMINANTS OF INTERNAL VALIDITY IN A THERAPEUTIC TRIAL:
 - INCLUSION AND EXCLUSION CRITERIA EXPLICIT AND ADHERED TO.
 - FLOW OF SUBJECTS THROUGH STUDY RECORDED.
 - POWER ANALYSIS TO DETERMINE PROPER NUMBER OF SUBJECTS.
 - RANDOM ALLOCATION OF SUBJECTS, MANAGED TO MINIMIZE BIAS
 - BLINDED ASSESSMENT OF BOTH CLINICAL AND IMAGING OUTCOMES.
 - INTENTION TO TREAT ANALYSIS.

11

INCLUSION AND EXCLUSION CRITERIA

- SHOULD BE CREDIBLE AND APPLICABLE IN GENERAL PRACTICE
 - THE MORE THEY MIRROR THE POTENTIAL CANDIDATES FROM THE BROADER POPULATION, THE GREATER THE EXTERNAL VALIDITY.
- If CRITERIA NOT CLEAR-CUT AND UNEQUIVOCAL, SELECTION CREEP CAN OCCUR
 - EXAMPLES OF VAGUE LANGUAGE:
 - UNRESECTABLE CANCER
 - FAILED MEDICAL THERAPY
 - LIFE EXPECTANCY OF LESS THAN . . .

RANDOMIZATION

- CONDUCTED AFTER INCLUSION CRITERIA ARE MET AND STUDY CONSENT OBTAINED.
- PROCESS NEEDS TO BE MANAGED CAREFULLY TO AVOID INTRODUCTION OF BIAS
 - Treatment assignment masked to as many participants as feasible.
 - Patients, nursing staff, imagers, pathologists, interventionalists.
 - IF ASSIGNMENT MUST BE REVEALED, SHOULD BE AT LAST MOMENT WHEN TEAM IS COMMITTED TO TREATMENT.
 - SHOULD BE HANDLED BY A THIRD PARTY NOT PART OF THE STUDY TEAM.
 - RANDOM NUMBER GENERATORS, SEALED OPAQUE ENVELOPES

13

RANDOMIZATION SCHEMES

- SIMPLE
 - EACH ASSIGNMENT IS INDEPENDENT OF THE PREVIOUS AND THE NEXT.
- BLOCKED
 - BLOCKS OF ASSIGNMENT OF VARYING LENGTHS.
 - BLOCKS OF 2, 4, 6, 8 MINGLED.
 - PROVIDES FOR BALANCED ASSIGNMENT OVER A FIXED NUMBER OF PARTICIPANTS.
 - MAY BE USED TO AVOID VERY UNEVEN NUMBERS OF PATIENTS IN EACH TREATMENT GROUP. MOST IMPORTANT IN SMALL STUDIES.
 - LENGTH OF BLOCKS VARIED AND KEPT SECRET- PREVENTS GUESSING AS TO WHICH ASSIGNMENT IS NEXT.

RANDOMIZATION

- STRATIFICATION
 - DIVIDING THE ASSIGNMENT GROUPS BY SOME IMPORTANT CLINICAL PARAMETER.
 - RACE, AGE GROUP, GENDER, STUDY CENTER, DISEASE SEVERITY,
 FTC.
 - Assures equal numbers among important subgroups.
 - Usually only 2 groups or 3 groups stratified.
- Can combine stratification and blocking
 - WILL HAVE DIFFERENT BLOCKING GROUPS FOR EACH SUBGROUP.

15

RANDOMIZATION

- May use unequal allocation of subjects
 - 1:2 OR 1:3
 - Helpful when one treatment inherently more attractive to potential subjects
 - APPLICABLE WHEN A WELL-STUDIED STANDARD THERAPY IS USED AS CONTROL.
 - There may be less need for data regarding safety on standard therapy than the New Therapy, so fewer standard therapy patients may be needed.

INTENTION TO TREAT ANALYSIS

- Analysis based on how participants were randomly assigned, regardless of whether each is actually treated as randomized.
- A KEY COMPONENT OF INTERNAL VALIDITY: IT IS INHERENTLY UNBIASED.
- Non-adherence is not random- provides insight into desirability of each treatment
- IF USE "AS TREATED" OR "PER PROTOCOL "ANALYSIS, WILL BE EXCLUDING PATIENTS WHO MAY BE DIFFERENT FROM THOSE WHO ARE INCLUDED.

17

THERAPEUTIC STUDY DESIGNS

- Parallel
 - Two groups randomized, treated and followed as two groups.
- CROSSOVER
 - TWO GROUPS RANDOMIZED, EACH STARTS ONE TREATMENT AND THEN AT A
 DESIGNATED TIME POINT, THEY CROSSOVER AND RECEIVE THE OTHER
 TREATMENT.
 - MAY NEED A WASHOUT PERIOD PRIOR TO STARTING DRUG OR THERAPY 2, TO ALLOW FOR EFFECTS OF DRUG ONE TO WEAR OFF.
 - CAN BE USED IN SHAM-CONTROLLED TRIALS IN SHAM GROUP ONLY

CHOICE OF CONTROL

- PLACEBO
 - RELATIVELY EASY TO IMPLEMENT IN DRUG TRIALS.
 - EASY STANDARD FOR APPROVAL OR ACCEPTANCE OF A NEW DRUG.
 - SHOULD NOT BE USED IF OTHER EFFECTIVE SIMILAR DRUGS ARE ALREADY APPROVED.
- SHAM THERAPY
 - SOME THERAPIES DO NOT HAVE A PLACEBO AND IN SOME CASES A SHAM PROCEDURE PROTOCOL CAN BE USED
 - MOST FEASIBLE WHEN A MINIMALLY-INVASIVE THERAPY WOULD OTHERWISE HAVE TO BE COMPARED TO A STANDARD OPERATION
 - SURGERY VS MINIMALLY-INVASIVE TRIALS NOTORIOUSLY DIFFICULT TO RECRUIT TO

19

CHOICE OF CONTROL

ACTIVE CONTROLS

- CONTROL RECEIVES ANOTHER THERAPY RATHER THAN PLACEBO
 - MOST ETHICAL APPROACH IS A CURRENT STANDARD OF CARE
- Can raise problems for analysis
 - SHOULD THE NEW TREATMENT BE BETTER THAN THE OLD?
 - MAY NOT BE FEASIBLE IF GOLD STANDARD IS HIGHLY EFFECTIVE.
 - IT MAY BE NEW THERAPY IS LESS INVASIVE, LESS EXPENSIVE, OR OTHERWISE ADVANTAGEOUS, BUT IS NOT BETTER.
 - SHOULD CHOOSE PRIMARY OUTCOME BASED ON THE PERCEIVED ADVANTAGE OF THE NEW THERAPY

TRIAL DESIGN

- SUPERIORITY
 - IDEAL IF A SIGNIFICANT IMPROVEMENT OVER CONVENTIONAL THERAPY ANTICIPATED FOR NEW TREATMENT.
- EQUIVALENCE
 - NEED TO HAVE MINIMAL DIFFERENCE BETWEEN GROUPS, WHICH MAY REQUIRE LARGE NUMBER OF SUBJECTS.
- Non-inferiority trials
 - THE NEW THERAPY IS NOT WORSE THAN CURRENT.
 - INVESTIGATOR DECIDES THE MARGIN THAT IS ACCEPTABLE FOR NON-INFERIORITY, BUT MUST BE DONE A PRIORI.

21

CLASSIC CLINICAL TRIAL STAGE DEFINITIONS

- Phase 1 Single arm 15 to 30 pts
 - Dosing assessment (escalation) studies
 - "FIRST IN MAN" EXPLORATORY STUDIES
 - INITIAL ASSESSMENT OF SAFETY
 - CLINICAL FEASIBILITY OF A THERAPY
- May be staged Phase IA and IB
 - If safe in a very limited group, can expand group to size sufficient to gather meaningful preliminary data
- GOALS
 - What is the maximal tolerated dose and recommended dose for Phase II?
 - IS A LARGER PHASE II TRIAL SAFE?
 - Preliminary data intended to allow planning for Phase II (eg sample size).

CLASSIC CLINICAL TRIAL DEFINITIONS

- PHASE II TRIALS
 - LARGER COHORT, POSSIBLY BROADENED INCLUSION CRITERIA
 - SAFETY AND INITIAL ASSESSMENT OF EFFICACY
- COMPARISON ARM MAY BE INCLUDED
 - PHASE IIA MAY USE HISTORIC CONTROLS, CONCURRENT CONTROLS
 - GOAL IS TO ASSESS SUITABILITY FOR LARGER PHASE III TRIAL FOR DRUGS
 - Phase IIB Larger, randomized typically
 - In device evaluation, often is the pivotal or key trial in FDA submission
 - IN DRUG EVALUATIONS, MAY BE COMBINED WITH PHASE III TRIALS.

23

CLASSIC CLINICAL TRIAL DEFINITIONS

- PHASE III
 - LARGE PIVOTAL TRIALS FOR NEW DRUGS OR INTERVENTIONS
 - TYPICALLY SEVERAL HUNDRED PATIENTS
 - NATIONAL OR INTERNATIONAL STUDIES
 - ALWAYS RANDOMIZED, USUALLY COMPARED TO CURRENT STANDARD THERAPY
 - INFREQUENTLY DONE FOR MEDICAL DEVICES OR INTERVENTIONAL PROCEDURES
 - MORE COMMON IN RADIATION THERAPY, ONCOLOGY, CARDIOLOGY

CLASSIC CLINICAL TRIAL DEFINITIONS

- PHASE IV TRIALS
 - POST-MARKET SURVEILLANCE STUDIES OVER MANY YEARS, WITH MINIMAL DATA GATHERED FROM LARGE NUMBERS OF PATIENTS
 - MONITORING USE AND OUTCOMES IN REGULAR PRACTICE
 - Now commonly mandated by FDA
 - BEST MEANS OF DETECTING RARE SIDE EFFECTS, COMPLICATIONS
 - REAL-WORLD EFFECTIVENESS

25

LIMITATIONS OF THE PHASE I-III STRUCTURE

- FIXED PROTOCOLS RIGID AND SEQUENTIAL
 - AS A RESULT, STUDIES ARE SLOW TO BE COMPLETED AND PRACTICE MAY ADVANCE BEFORE COMPLETION.
 - SAMPLE SIZE ESTIMATE MAY NOT BE ACCURATE
- Interim analyses often not included because of potential loss of statistical power due to multiple analyses

INTERIM ANALYSES FOR PHASE II TRIALS

- RANGE OF DESIGNS TO LIMIT STUDY CONTINUATION IF FUTILE
 - Gehan rejects an ineffective treatment early if first ${\sf N}$ number of subjects have no benefit.
 - FLEMING EARLY TERMINATION WHEN INTERMEDIATE ANALYSIS AFTER SPECIFIED NUMBER OF SUBJECTS SHOWS EXTREME RESULTS EITHER IN FAVOR OR AGAINST TREATMENT.
 - · SIMON -
 - OPTIMAL DESIGN: MINIMIZES THE NUMBER OF PATIENTS TREATED IF NULL HYPOTHESIS IS TRUE
 - MINIMAX DESIGN: DETERMINES MINIMAL SAMPLE SIZE FOR THE WHOLE TRIAL.
- NEED STATISTICIAN TRAINED IN DESIGN TO PLAN

27

EXAMPLE OF OBRIEN- FLEMING METHOD

- PRE-PLANNED INTERIM ANALYSES
- BILATERAL VERSUS UNILATERAL FEMORAL ACCESS FOR UAE: RESULTS OF A RANDOMIZED COMPARATIVE TRIAL*
 - PRIMARY OUTCOME: FLUOROSCOPY TIME

Planned Analyses	Number of Patients	Required P Value
1ST	22	0.0071
2ND	52	0.0227
3RD	94	0.0416

- AFTER 2ND ANALYSIS, REQUIRED SIGNIFICANT LEVEL ACHIEVED AND STUDY ENDED
- (13 MIN VERSUS 16.6 MIN, P = 0.0033)

*Costantino M, et al J Vasc Interv Radiology 2010; 21:829-835

ADAPTIVE TRIAL DESIGNS

- TRADITIONAL STUDIES USE FREQUENTIST STATISTICS USING NULL HYPOTHESIS TESTING
- Use Bayesian methods to adjust study in real-time
 - Pre-study prior probability of the estimate of treatment effect is changed as data from the study is gathered to estimate a new posterior probability
- ADAPTIVE DESIGNS REQUIRE CAREFUL PLANNING WITH KNOWLEDGEABLE TRIALISTS AND BIOSTATISTICIANS.

29

ADAPTIVE METHODS - APPLICATIONS

- Response adaptive randomization
 - Interim analyses can allow adjustment of allocation ratios to favor treatments with more favorable interim results
- SAMPLE SIZE RE-ADJUSTMENT
 - AS INITIAL OUTCOMES ARE OBTAINED, CAN INCREASE OR DECREASE SAMPLE SIZE AND IMPROVE TRIAL EFFICIENCY AND ACCURACY
- SEAMLESS DESIGNS
 - ALLOW IMMEDIATE CONTINUATION OF ONE PHASE INTO ANOTHER TO INCREASE EFFICIENCY
- ADAPTIVE ENRICHMENT
 - MODIFICATION OF ELIGIBILITY CRITERIA TO FOCUS ON SUBGROUPS WITH FAVORABLE OUTCOMES

REALISTICALLY

- Most young investigators will focus on small studies testing a new idea
 - Does this proposed intervention have any benefit?
 - Does this proposed intervention have significant risk?
 - Does this combination of treatments work any better than the standard treatment alone?
- Many of these preliminary studies do not fit neatly into the Phase I— IV framework, but likely most are Phase I or II ish.

31

RESEARCH QUESTIONS WORTH CONSIDERING

- Does device A work better than device B for a standard therapy?
 - BOTH DEVICES ARE FDA CLEARED BUT HAVE NOT BEEN COMPARED
- What subpopulations respond best to my intervention?
 - Role of Biomarkers as predictors of response or complications from interventions is important
- What preliminary testing or follow-up protocol is best for a given intervention?
- What Peri-Procedural management approach works best for my intervention?

CONSORT STATEMENT

REPORTING RANDOMIZED TRIALS

- PARTICIPANTS ELIGIBILITY STATED AT THE TIME OF STUDY DESIGN, ALONG WITH EXCLUSION CRITERIA.
- THE INTERVENTIONS ARE DESCRIBED IN DETAIL.
- PRIMARY AND SECONDARY OUTCOME MEASURES DEFINED.
- STATISTICAL ANALYSIS PLAN DETAILED DEFINED PRIOR TO START OF STUDY

• Maher D, Schulz KF, Altman D. The CONSORT Statement: Revised recommendations for Improving the quality of reports of parallel-group randomized trials. JAMA 2001;285:1987-1991

33

CONSORT STATEMENT

REPORTING RANDOMIZED TRIALS

- FLOW OF PATIENTS THROUGH STUDY PROVIDED IN FLOW CHART.
 - Number screened, Qualified, Randomized, Treated, and assessed at each stage of follow-up.
- Dates of recruitment provided
- BASELINE DEMOGRAPHIC AND CLINICAL CHARACTERISTICS PROVIDED AND COMPARED.

•Maher D, Schulz KF, Altman D. The CONSORT Statement: Revised recommendations for Improving the quality of reports of parallel-group randomized trials. JAMA 2001;285:1987-1991

CONSORT STATEMENT

REPORTING RANDOMIZED TRIALS

- Adverse events assessed and reported equally for both groups.
- ANCILLARY ANALYSES TAKE INTO ACCOUNT MULTIPLICITY OF ANALYSES.
 - Less weight put on conclusions from secondary analyses.
- DISCUSSION INCLUDES:
 - INTERPRETATION OF RESULTS AND GENERALIZABILITY
 - DISCUSSION OF LIMITATIONS, POTENTIAL BIASES.
 - DISCUSSION OF THE EVIDENCE IN CONTEXT OF OTHER STUDIES, CURRENT KNOWLEDGE.

 Maher D, Schulz KF, Altman D. The CONSORT Statement: Revised recommendations for Improving the quality of reports of parallel-group randomized trials. JAMA 2001;285:1987-1991

35

ONCE YOUR PROTOCOL IS DONE . . .

- IRB APPROVAL
- ON OCCASION, FDA IDE OR IND
- REGISTER THE TRIAL ON CLINICALTRIALS.GOV

SUMMARY

- MOST INVESTIGATORS WILL START WITH PHASE I-II TRIALS BUT INCLUDING SOUND DESIGN PRINCIPLES WILL IMPROVE VALIDITY OF RESULTS.
- INTERNAL VALIDITY SHOULD BE PRIMARY GOAL OF STUDY DESIGN.
- NEWER ADAPTIVE MODELS MAY HAVE APPLICABILITY IN MANY SETTINGS.
- CONSORT STATEMENT A USEFUL TOOL BOTH FOR DESIGNING AND REPORTING STUDIES, EVEN THOSE THAT ARE NOT RANDOMIZED.

