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Learning Objectives

 Appreciate the role of uncertainty in 
estimation, testing, and prediction from 
observed data 

 Understand and interpret 

 Confidence intervals

 Hypothesis testing

 P-values 

 Second-generation p-values (if time allows)
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Some tenants

 Inference is learning

 Information gain is reduction in uncertainty

 Inference and prediction are different tasks

 Inference is harder than prediction

 Accurate prediction does *not* imply accurate 
inference (and vice-versa)

 Prediction is (often) just optimization
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Uncertainty unlocks information

 Is digital mammography more ‘accurate’ than film-screen 
at detecting incident breast cancer in screening 
population?

 One radiologist’s or facility’s experience might suggest 
digital mammography detects more cancers and/or 
reduces false positives.

 Is this true for the general population of eligible 
women, radiologists, and facilities?
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Vernacchia, et al. AJR, 2009

A published study argued digital mammography improves CDR 

based on a single facility’s observed change after conversion.
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CDR = Cancer Detection Rate
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Important to consider variation within and between facilities. 

Observed change in CDR from BCSC facilities that did 

and did not switch to digital. 7

CDR for six randomly selected BCSC facilities exclusively 

performing film-screen mammography from 1998 – 2006.
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Elmore, et al. Radiology, 2009 Miglioretti, et al. JNCI, 2007

Screening Mammography Diagnostic Mammography

Radiologist-level variation
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Estimate quantities from data

 True sensitivity of a test is 0.8 (80%)

 Simulate study data (sequence of zeros, ones)

 Plot shows:

 running estimate vs. sample size

 1 simulation, then 10 

 97.5th & 2.5th percentile of sequence variability

 Plot shows “why statistics works”
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Proportion

Relation to Sample Size

 As the sample size grows…

 the sequences become more concentrated near the true 
proportion (in this case, 0.8)

 Red lines comes from theory and …

 captures 95% of the sequences at each sample size 

 shows the “half-width” ; the distance from the true 
proportion to the red line

 illustrates a sample size projection
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Formula for half-width

 As the sample size grows, this formula gets more 
accurate. The formula also does better when the 
true proportion is away from 0 or 1.

 In our example, p=0.8 .
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Measures of Variability

 Range 

 Maximum - Minimum 

 Interquartile Range 

 75th percentile - 25th percentile

 Not always informative

 Binary data

 There are better measures, like variance
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Measures of Variability

 Variance is a measure of the tendency of data to 
cluster around the true mean

 Variance is average squared deviation from mean

��� =
∑ ����� − 
��� �

���

� − 1

 Units are squared, so square root (SD) is easier to 
interpret
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�� = √��� 

Measures of Variability

 Standard Deviation (SD)  

 describes variability in the data

 variability pertains to individuals in the population

 property of the population

 Standard Error (SE) = ��/ �
 describes variability of the sample mean

 variability pertains to estimates from groups of data

 property of estimates from samples is size �
(distribution of possible samples)
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Why focus on the mean?

 Good example for illustrating general principles

 Proportions and rates are means

 Estimates of complicated quantities often behave like 
means

 Means are not perfect; sensitive to outliers and 
population skewness

 Alternatives: median (middle value when ordered) and 

mode (most frequent value)
19

20

19

20



11

Combining Estimates & Variability

 An estimate alone is not informative

 Variability is the key

 Low variability translates to high precision

 High variability translates to low precision

 Confidence intervals (CI) express location and magnitude 
of variability

 They provide a range of estimates that are well supported 
by the data

 Values in the CI are equally well supported by the data 
(even the pesky ones at the interval edges)

21

Confidence Intervals

 Most 95% confidence intervals look like 

Estimate ± 1.96*SE

 when…
 the sample size is ‘large enough’

 the statistician is in a good mood

 1.96*SE is the “margin of error” or “half-width”
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CIs can miss (bummer)

 95% CI formulas will exclude the truth 5% of the time

 The problem is that you never know if any particular 
interval computed from data misses or not

 Increasing the sample size… 

 Does not change the miss rate (!)

 Reduces the width of the CI 

 Reduces the amount by which the CIs misses the 
truth (on average) (!)
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Interpretation of CIs

 Good:

 “A collection of estimates that are consistent with the 
data at the 95% level”

 Here the ‘95%’ refers to the statistical procedure

 Bad: 

 “There is a 95% chance that the mean in the interval”

 “I am 95% confident that the mean is in the interval”

 Here the ‘95%’ refers to the data or, worse, yourself

 Note that both statements are strictly false
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Statistical Testing (two types)

1. Specify a null and alternative hypothesis about an 
unknown parameter.

2. Compute an estimate of the parameter and its variance.

3. Then, based on #3, there are two options...

Hypothesis Testing: Decide to reject or accept the null 
hypothesis.

Significance Testing: Measure the evidence ‘against the 
null hypothesis’ and report it.

We use the probability of observing the estimate, or a more 
extreme estimate, under null hypothesis for this (p-value). 35

P-values

 When you report the p-value, you are “measuring the 
evidence against the null hypothesis”. 

 Small p-values mean more evidence against the null.

 Large p-values mean the evidence is inconclusive.

 Two equal p-values do not imply same amount of 
evidence unless the sample sizes are equal.

 It is impossible to collect evidence in favor of a null 
hypothesis using a hypothesis or significance test.

 P-values never support the null hypothesis (ever!!).
36
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H0 True H1 True

Accept H0

(Reject  H1)

Correct decision  Type II Error 

P [Type II Error ] = 

Accept H1

(Reject  H0)

Type I Error 

P [Type I Error] = 

(‘Significance’ level; 

typically 0.05)

Correct decision

Power = 1- 

Errors and Error rates of  

Hypothesis Testing 

37

Shortcut: CIs are Hypothesis Tests

 Confidence intervals are, in fact, hypothesis tests.

 A 95% Confidence Interval is the set of all null 
hypotheses that were accepted (that failed to reject) at 
the 5% level (i.e., they had a p-value > 0.05). 

 This convenient fact is why you don’t need to do both.

 When you check if your p-value is less than some pre-
determined alpha-level, you are preforming a 
“hypothesis test”. This is the same as checking if the 
null hypothesis is in the CI.
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More on CIs

 CIs provide more information than the p-value. The focus 
is more scientific because of its emphasis on estimating an 
unknown quantity. 

 Get in the habit of reporting CIs. Your statistical acumen 
will get better and the science will benefit. 

 Ask: How large? How small? How different?

 Don’t ask: Is it large? Is it small? Are they different?

 There are ‘non-parametric’ tests that don’t have an easy 
estimation analogue. Beware of over-interpreting these 
tests. (“If I don’t have a red pencil, what do I have?”) 
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Hypothesis tests are just
diagnostic tests

Patient does 

not have the 

disease

Patient has the 

disease

Test  -

for disease
True Negative

Correct

False Negative

(1-Sens)

Test + 

for disease
False Positive

(1-Spec)

True Positive

Correct 

Sensitivity = TP/(TP+FN) PPV = TP/(TP+FP)
Specificity = TN/(TN+FP) NPV = TN/(TN+FN)

41

So what?

 Sens & spec analogous to (Power) & 1-Type I error rate.

 These things tell us about the reliability of the testing 
procedure.  

 PPV & NPV analogous to false discovery rates (not shown)

 These rates tell us about the reliability of the observed 
results (i.e., the data or test outcome).

 The discipline of statistics is still confused about this; We 
still try to use Type I & II error rates to tell us about the 
reliability of observed data.
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Usefulness of Indifference zones

 Use an indifference zone to represent null effect, 
practically null effects, & trivial effects.

 Indifference zones often represent clinical or practical 
equivalence.

 Indifference zones lower Type I Error rates, lower 
false discovery rates, and have improved statistical 
properties (but sometimes lower power).

 Indifference zones are the key tool that make 
equivalence studies and non-inferiority studies work.

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

95% Confidence Intervals for the Probability

 Sample Size of  75  per Endpoint

Replication

P
ro

b
a
b

ili
ty

Missed True Value:             7 / 100

Missed Indifference Zone:   2 / 100

43

44



23

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

95% Confidence Intervals for the Probability

 Sample Size of  75  per Endpoint

Replication

P
ro

b
a
b

ili
ty

Missed True Value:             2 / 100

Missed Indifference Zone:   0 / 100

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

95% Confidence Intervals for the Probability

 Sample Size of  400  per Endpoint

Replication

P
ro

b
a
b

ili
ty

Missed True Value:             5 / 100

Missed Indifference Zone:   0 / 100

45

46



24

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

95% Confidence Intervals for the Probability

 Sample Size of  400  per Endpoint

Replication

P
ro

b
a
b

ili
ty

Missed True Value:             5 / 100

Missed Indifference Zone:   0 / 100

P-values for indifference zones

 A second-generation p-value (SGPV) uses a 
‘interval null’ or null zone for inference purposes.

 The SGPV measures the overlap between the 
confidence interval and the indifference/null zone.

 SGPVs indicate when the data favor the alternative, 
favor the null, or are inconclusive.

 SGPVs can be used to improve reporting, study 
planning, equivalence testing, feature selection and 
more.
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Second-generation p-values

Point null hypothesis H�

Data-supported hypothesis H� and confidence interval CI�, CI�

From Blume et al. PLOS One 2018

and interval null hypothesis H�
� , H�

�

�
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P-values with indifference zones

 When the CI does not overlap with the indifference 
zone we have SPGV=0. This implies clinically 
meaningful departures from the null. 

 When the CI is completely contained in the indifference 
zone, we have SPGV=1. This implies clinical 
equivalence.

 When the CI partially overlaps with the indifference 
zone, we have 0<SGPV<1. This implies the results are 
inconclusive.
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SGPV Illustration

Works with confidence, credible, and support intervals

Blume et. al. PLOS One 2018 51

Take Home Messages

 Confidence intervals are versatile and they avoid some of 
the common pitfalls of statistical testing.

 The ‘art’ in statistics is in translating a scientific question 
into quantifiable statement that can be tested empirically.

 More on statistical testing: Blume and Peipert. Journal of the 
American Association of Gynecologic Laparoscopists 2003; 10(4): 439-
444.

 Second-Generation p-values are a potential solution. See 
www.statisticalevidence.com (Blume et al PLOS One 2018)
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