

Data/Resp onse	Agreement Measure	What it measures	Extensions
Dichotomous or Categorical	Карра	Percent agreement corrected for chance ('The diagonal')	Multireader Kappa
Ordered Categorical	Weighted Kappa	Percent agreement corrected for chance, but partial credit is given for being 'close' ('The diagonal' + partial credit for close 'off diagonals')	Weighted Multi- reader Kappa
Continuous	Intraclass Correlation Coefficient (ICC)	Proportion of total response variance due to readers	Analysis and reporting of variance components

Data/Respo nse	Agreement Measure	S	cale
Dichotomous	-1 < Kappa <= 1	> 0.75 > 0.40 & <0.75 < 0.40	is excellent is fair to good is poor
Categorical	Weighted Kappa	Same as Kappa	
Continuous	0 <= ICC <= 1	> 0.85 nea > 0.75 & <0.85 > 0.60 & <0.75 > 0.40 & <0.60 < 0.40	rly perfect reliability excellent reliability good reliability fair reliability poor reliability

	Multirater K	P Value [†]		
Parameter	CT	MR Imaging	CT	MR Imaging
Tumor visualization	0.16 (0.12 to 0.29)	0.32 (0.22 to 0.41)	<.001	<.001
Invasion of right parametrium	-0.04 (-0.02 to 0.13)	0.10 (0.06 to 0.27)	.961	<.001
Invasion of left parametrium	-0.05 (-0.01 to 0.11)	0.12 (0.05 to 0.29)	.981	<.001
Overall parametrial invasion [‡]	-0.04 (-0.02 to 0.13)	0.11 (0.05 to 0.29)	1	
Staging ⁵	0.26 (0.23 to 0.34)	0.44 (0.34 to 0.56)	<.001	<.001
considered to represent poor agreen excellent agreement (8). For testion whether multirater s v	nent; a value of 0.40-0.75, f alues were significantly great eft and right parametrium. (D	air to good agreement; ar ter than zero. ata in parentheses are ra	nd a value g nges of pair	reater than 0.79 wise values ove
*Average of multirater x values in # both left and right parametrium.)				

DOI 10.1007/s00330-008-1191-7	NEURO
Birgit B. Ertl-Wagner Jeffrey D. Blume Donald Peck Jayaram K. Udupa Benjamin Herman Anthony Levering Ilona M. Schmaffuss	Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN)
The members of the ACRIN 6662 study group	6662 Trial
 Retrospective the value of the calculating value of the value of the calculating va	e reader study, designed to assess two semi-automated systems for olumes of brain tumors on MR atients with new, postoperative, t malignant gliomas.

Table I Summary of the variance components contributing to the total variance when estimating volume differences in the FLAIR hyperintensity over time with the respective methods (LCB lower confidence bound, UCB upper confidence bound) 3DVIEWNIX-TV Variance component 95% LCB 95% UCB % total (ICC) 95% LCB 95% UCB Cases 2,009.08 1,895.21 2,128.23 0.95 0.92 0.98 Readers 0.00 0.00 19.28 0.00 0.00 0.01 Errot 102.82 38.95 156.53 0.05 0.02 0.07 Total 2111.89 -

95% UCB

344.45

79.44

564.02

95% UCB

4,790.47

425.42

4,455.45

-

_

95% LCB

175.53

206.33

95% LCB

1,655.03

2,125.08

0.00

-

0.00

-

% total (ICC)

% total (ICC)

0.35

0.00

0.65

0.44

0.00

0.56

95% LCB

95% LCB

0.26

0.00

0.42

0.33

0.00

0.37

-

_

95% UCB

95% UCB

0.57

0.10

0.69

0.61

0.06

0.66

-

-

13

Eigentool

Cases

Readers

Error

Total

Manual

Cases

Total

Readers Error 2

226.53

422.40

650.60

2,782.05

3,564.82

6,346.87

0.00

1.66

Variance component

Variance component

DVIEWN	X-TV					
8	Variance component	95% LCB	95% UCB	% total (ICC)	95% LCB	95% UCB
lases	89.08	74,76	118.47	0.51	0.40	0.71
Readers	0.00	0.00	10.22	0.00	0.00	0.06
Server	87.05	38,58	129.27	0.49	0.28	0.59
Total	176.13	-	100000		-	-
ligentool				\sim		
1	Variance component	95% LCB	95% UCB	% total (ICC)	95% LCB	95% UCB
Tases	76.84	26.59	196.72	0.25	0.12	0.53
Readers	0.00	0.00	43.45	0.00	0.00	0.09
Server	232.64	73.63	379.43	0.75	0.44	0.85
Total	309.47	-	22.000	-	1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -	
Annad	\supset					
shade-c	Variance component	95% LCB	95% UCB	% total (KCC)	95% LCB	95% UCB
lases .	397.98	283.37	1,118,21	0.18	0.14	0.39
Readers	0.00	0.00	383.66	0.00	0.00	0.10
Error	1,825.26	617.52	3,225.44	0.82	0.58	0.84
fotal	2,223.23		-		-	-

etection of Advanced Stage (maging Studies	(≥IIB) Cancer by Retro	spective Readers of CT	and MR
arameter	CT*	MR Imaging*	P Value
Mean sensitivity	0.28 (0.14-0.38)	0.47 (0.400.57)	.104
Mean specificity	0.90 (0.84-1.00)	0.79 (0.77-0.80)	.099
Mean positive predictive value	0.55 (0.38-1.00)	0.36 (0.32-0.39)	.001
Mean negative predictive value	0.83 (0.81-0.84)	0.85 (0.83-0.87)	.305
rean negative predictive value	0.83 (0.81–0.84)	0.85 (0.83-0.87)	.305

	C	٩D	No	CAD	
Reader	AUC	SE	AUC	SE	p-value
1	0.8586	0.0411	0.8039	0.0500	0.2062
2	0.8771	0.0475	0.7967	0.0489	0.1231
3	0.8405	0.0445	0.8274	0.0468	0.7929
4	0.7761	0.0567	0.7471	0.0575	0.6399
5	0.8577	0.0444	0.7963	0.0557	0.2588
6	0.7765	0.0559	0.6763	0.0656	0.1230
7	0.8119	0.0558	0.8396	0.0513	0.4504
8	0.7757	0.0577	0.7984	0.0561	0.6596
9	0.7281	0.0588	0.7862	0.0537	0.2734
10	0.7866	0.0568	0.7458	0.0591	0.4677
11	0.7479	0.0606	0.7639	0.0567	0.8310
12	0.8493	0.0501	0.8077	0.0486	0.2715
13	0.7416	0.0601	0.7921	0.0532	0.4056
14	0.8809	0.0434	0.8245	0.0460	0.2128
15	0.8434	0.0502	0.8068	0.0512	0.5048
16	0.8636	0.0412	0.7942	0.0511	0.1472
17	0.8346	0.0534	0.8253	0.0505	0.8443
18	0.8733	0.0433	0.7997	0.0553	0.0446
19	0.8632	0.0449	0.8136	0.0529	0.0969
20	0.7946	0.0587	0.7879	0.0599	0.8289
Overall	0.8191		0.7917		0.0865

Some results
Overall test averages AUCs using random-reader effects model. The p-value is 0.0865.
The 95% CIs for the difference is [-.0043, 0.0591]
95% CIs for Mean Accuracy of Each Modality
For CAD : [0.7367, 0.9014]
For No CAD : [0.7108, 0.8726]

			CAD	NoCAD	
		Readers	Average AUC	Average AUC	p-value
	All	20	0.8091	0.7841	0.0890
BIRADS	Expert	9	0.8266	0.7972	0.1308
	Novice	11	0.7949	0.7734	0.2665
Prob. of	All	20	0.8191	0.7917	0.0865
Malignancy	Expert	9	0.8383	0.8058	0.0752
Scale	Novice	11	0.8033	0.7801	0.2390
% Prob. of	All	20	0.8238	0.8036	0.2529
Malignancy	Expert	9	0.8431	0.8231	0.1941
(PPM)	Novice	11	0.8080	0.7876	0.3881

AUCs for Sextant PZ Prostate Cancer Localization with MR Imaging Alone and	
Combined MR Imaging–MR Spectroscopic Imaging	

		Combined MR Imaging-MR	
Reader	MR Imaging	Spectroscopic Imaging	P Value
1	0.6028	0.5856	.2614
2	0.5723	0.5425	.2399
3	0.6264	0.5907	.0475
4	0.6054	0.5933	.5311
5	0.6163	0.6050	.6271
6	0.6092	0.5741	.0268
7	0.5863	0.5930	.7359
8	0.6099	0.6029	.6338
All Readers	0.6007	0.5844	.0892

 Multi-reader studies Multi-reader study designs typically introduce a trade-off between required cases and readers and can thus lead to studies with fewer required cases. Computations for design and analysis are complex. Power to compare average AUC of two modalities, if difference in areas in 0.10, and average AUC is 0.85. 					e-off ad to	
	4 readers 6 readers 8 readers					
Design	n=50	n=100	n=50 n=100		n=50	n=100
Fully paired	0.5	0.61	0.77	0.88	0.89	0.97
Unpaired case, paired reader	0.29	0.42	0.44	0.64	0.53	0.75
Paired case, unpaired reader	0.36	0.44	0.6	0.71	0.76	0.86
	unpaired reader Zhou , Obuchowski & McClish, 2002					

	J = 4		J = 6		J = 8	
Study Design	<i>m</i> = 50	<i>m</i> = 100	<i>m</i> = 50	<i>m</i> = 100	<i>m</i> = 50	<i>m</i> = 100
Paired-patient, paired-patient, paired-reader Paired-patient, unpaired-reader Unpaired-reader Unpaired-patient, unpaired-reader Paired-patient-per-reader, paired-reader Note: For paired-patient stud m is the total number of pati malignant lesions are needed	$\hat{\lambda} = 8.16$ Power = 0.50 $\hat{\lambda} = 4.08$ Power = 0.29 $\hat{\lambda} = 5.31$ Power = 0.36 $\hat{\lambda} = 3.43$ Power = 0.26 $\hat{\lambda} = 9.27$ Power = 0.54 Ity designs, <i>m</i> is the intra with malignation of the <i>J</i> of the constraints of the the second se	$\hat{\lambda} = 11.02$ Power = 0.61 $\hat{\lambda} = 6.58$ Power = 0.42 $\hat{\lambda} = 6.82$ Power = 0.44 $\hat{\lambda} = 5.05$ Power = 0.35 $\hat{\lambda} = 11.99$ Power = 0.64 te total number of paint lesions needed per reader.	$\hat{\lambda} = 11.33$ Power = 0.77 $\hat{\lambda} = 4.94$ Power = 0.44 $\hat{\lambda} = 7.57$ Power = 0.60 $\hat{\lambda} = 4.29$ Power = 0.39 $\hat{\lambda} = 13.90$ Power = 0.84 tients with malignar r diagnostic test; for	$\hat{\lambda} = 15.69$ Power = 0.88 $\hat{\lambda} = 8.27$ Power = 0.64 $\hat{\lambda} = 9.90$ Power = 0.71 $\hat{\lambda} = 6.59$ Power = 0.54 $\hat{\lambda} = 17.99$ Power = 0.92 It lesions needed for paired-patient-per-r	$\hat{\lambda} = 14.07$ Power = 0.89 $\hat{\lambda} = 5.51$ Power = 0.53 $\hat{\lambda} = 9.62$ Power = 0.76 $\hat{\lambda} = 4.89$ Power = 0.48 $\hat{\lambda} = 18.54$ Power = 0.96 the study; for unpageader designs, a total	$\hat{\lambda} = 19.9$ Power = 0.9' $\hat{\lambda} = 9.4'$ Power = 0.7: $\hat{\lambda} = 12.'$ Power = 0.8' $\hat{\lambda} = 7.7'$ Power = 0.6' $\hat{\lambda} = 23.$ Power = 0.9' ired-patient desi 1 of m patients
Zhou, Obuchov	wski, McCli	sh. Statistica	al Methods i	n Diagnosti	c Medicine.	

