	Memorial Sloan Kettering Cancer Center	
	Assessing New Qu Imaging Biomarker	iantitative rs
	Chaya Moskowitz, PhD Department of Epidemiology & Biostatistics	
	With thanks to Todd Alonzo	Financial disclosures: None
1		

Outline

- Steps to evaluate whether an imaging biomarker is useful
- Evaluating technical performance with an emphasis on precision

3

Useful Quantitative Imaging Biomarkers Must have: Analytic validity Technical performance; Does the imaging biomarker measure what it is supposed to measure? Clinical validity Is the imaging biomarker associated with the clinical (patient) outcome? Clinical usefulness Does the imaging biomarker have a positive impact on patients or public health?

Analytic Validity

- Early-phase studies
 - Preclinical, laboratory studies
 - Early clinical development

Memorial Sloan Kettering Cancer Center

ĺ₽

€

5

Analytic Validity

- · Early-phase studies
 - Preclinical, laboratory studies
 - Early clinical development
- Study endpoints and metrics
 - Bias, analytic accuracy
 - · Mean differences between measurement and truth
 - · Analytic sensitivity, specificity, ROC curves
 - Precision
 - · Repeatability, reproducibility

Importance

- Potential utility of an imaging biomarker can be greatly impacted by lack of precision
- Poor precision can make measured change in biomarker difficult to interpret
- Developing precise quantitative imaging biomarkers can be difficult
- Acceptable magnitude depends on use
 - High precision should be a necessary component of any procedure intended for diagnostic use

11

Metrics for Assessing Precision

- Descriptive statistics
 - Means, variances, correlations
- Plots
 - Pairwise scatter plots
 - Bland-Altman plots (Bland and Altman, Lancet (1986))
 - Plot of difference vs average
 - Mean difference
 - 95% Limits of Agreement (mean difference ± 2 x standard deviation)
- Primary metrics usually rely on:
 - Absolute differences between measurements
 - Components of variance

Memorial Sloan Kettering Cancer Center

15

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Example of Reproducibility Study

Reproducibility of Measurement of Apparent Diffusion Coefficients of Malignant Hepatic Tumors: Effect of DWI Techniques and Calculation Methods

Interobserver	Agreement for	ADC	Measurement	Presenting	With ICC
---------------	---------------	-----	-------------	------------	----------

				Respiratory-triggered DWI					
	Breath-hold DWI			Two b-value method			Multiple b-value method		
		ICC	LOAª		ICC	LOA®		ICC	LOA
First	ADC 0/500	0.979 (0.921-0.993)	11.3	ADC _{0/500}	0.918 (0.803-0.967)	14.3	ADC ₀₋₅₀₀	0.953 (0.884-0.981)	12.1
Second		0.974 (0.934-0.990)	11.8		0.925 (0.736-0.974)	15.9		0.917 (0.760-0.969)	16,4
First	ADCsoreo	0.983 (0.942-0.994)	11.4	ADCsasoo	0.969 (0.922-0.988)	12.6	ADC50-500	0.972 (0.928-0.989)	12.1
Second		0.964(0.911-0.986)	12.9		0.878 (0.697-0.992)	21.2		0.889 (0.772-0.957)	20.2
First				ADC01000	0.974 (0.934-0.990)	8.2	ADC ₀₋₁₀₀₀	0.979 (0.947-0.992)	7.7
Second					0.803 (0.555-0.919)	20.7		0.803 (0.555-0.919)	23.2

Kim et al., J of Magentic Resonance Imaging (2012)

17

Other Considerations

- Many other possible methods
- Estimation rather than testing
 - P-value less interesting
 - Confidence intervals

Memorial Sloan Kettering Cancer Center

Conclusions

- Critical to assess analytic validity; many studies do not rigorously assess analytic validity
 - Consistency of results when imaging biomarker assessed at short intervals on same subjects
 - Primarily early-phase studies, but methods may be useful for laterphase studies as well
 - Design studies to evaluate both repeatability and reproducibility
- Equally critical to assess both clinical validity and clinical usefulness of an imaging biomarker

19