Imaging as a Predictor of Therapeutic Response

2017 RSNA Clinical Trials Methodology Workshop

David A. Mankoff, MD, PhD

Department of Radiology (Nuclear Medicine)
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA
Imaging and Therapeutic Response

- Clinical scenarios and questions
- Cancer biomarker approaches for functional and molecular imaging
 - Prognosis
 - Prediction
 - Response
 - Biologic response
Guiding Cancer Therapy: Clinical Needs

Pre-Rx
- Aggressive Dz?
- Rx Targets

Therapy
- Early
- Mid-Rx
- Response?
 - Yes/no
 - How much?

Post-Rx
- Residual Disease?

Relapse Survival
How Can Biomarkers Guide Cancer Therapy?

- **Goals in cancer treatment**
 - Characterize tumor biology pre-Rx
 - Individualized, specific therapy
 - Static response may be acceptable
- **The implied needs for cancer biomarkers**
 - Characterize tumor biology, predict behavior
 - Identify targets, predict response
 - Measure tumor response (early!)
 - Relate response to survival
Biomarkers and Cancer Therapy
What Can Imaging Do?

- **Goals in cancer treatment**
 - Characterize tumor biology pre-Rx
 - Individualized, specific therapy
 - Static response may be acceptable

- **The implied questions for cancer imaging**
 - Characterize in vivo tumor biology - prognosis
 - Identify targets, predict response - prediction
 - Measure tumor response (early!) - response
 - Relate response to survival - biologic response
Standards for Reporting Prognostic Tumor Marker Studies

Todd A. Alonzo, Division of Biostatistics, University of Southern California Keck School of Medicine, Los Angeles, CA
Imaging and Therapeutic Response

- Clinical scenarios and questions
- Cancer biomarker approaches for functional and molecular imaging
 - Prognosis
 - Prediction
 - Response
 - Biologic response
Study Design for: Prognosis

Kaplan-Meier Plot:

- In vitro assay examples:
 - Proliferation - Ki-67
 - Receptor expression - ER
 - Oncogene expression - HER2
Brain Tumor FDG Uptake vs Survival: Tumor Volumes

- Tralins, J Nucl Med, 2002

Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>P value as prognostic marker</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>.25</td>
<td>.25</td>
<td>-</td>
</tr>
<tr>
<td>KPS</td>
<td>.27</td>
<td>.27</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>.017</td>
<td>.017</td>
<td>-</td>
</tr>
<tr>
<td>T1 Gad</td>
<td>.0035</td>
<td>.0035</td>
<td>.91</td>
</tr>
<tr>
<td>T1 Gad + Cavity</td>
<td>.17</td>
<td>.17</td>
<td>-</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>.0024</td>
<td>.0024</td>
<td>.0024</td>
</tr>
</tbody>
</table>
FDG Predicts Survival in Recurrent Thyroid Cancer - Robbins, JCEM, 2006

131I- FDG PET

High TG, Neg Scan L Cervical LN

B

Surviving Fraction

FDG-

p<0.001

FDG+

FDG - (n=180) FDG + (n=219)

At risk 314 186 94 40

Months from PET Scan
Imaging Hypoxia as the Accumulation of a Radiopharmaceutical

Nitroreductase enzymes

Radical Anion

covalent bonding to macromolecules

University of Washington
KA Krohn
Tumor Hypoxia Quantified by PET Predicts Survival

FMISO PET
Brain Tumor

FMISO PET
H & N Cancer

Cu-ATSM PET
Cervical Cancer

(Spence, Clin Cancer Res, 2008)

(Rajendran, Clin Can Res, 2007)

(Dehdashti, Int J Radiat Oncol Biol Phys, 2003)
ACRIN 6684
MULTICENTER, PHASE II ASSESSMENT OF TUMOR HYPOXIA IN GLIOBLASTOMA USING \(^{18}\)F-FLUOROMISONIDAZOLE (FMISO) WITH PET AND MRI
Elizabeth Gerstner, MD, PI

Outcomes:
Progression
Overall Survival (OS)

Diagnosis and Surgery
FMISO PET MRI
FMISO PET MRI

Radiotherapy and Temazolamide
ACIN 6684: Hypoxia PET and MRI Predict GBM PFS and OS

Table 3: Cox Regression Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Overall Survival Time</th>
<th>Progression Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>SUVpeak</td>
<td>1.54</td>
<td>1.00, 2.36</td>
</tr>
<tr>
<td>TBmax</td>
<td>1.16</td>
<td>0.75, 1.81</td>
</tr>
<tr>
<td>HV</td>
<td>1.00</td>
<td>0.97, 1.03</td>
</tr>
<tr>
<td>Mean k\text{trans}</td>
<td>1.17</td>
<td>1.02, 1.34</td>
</tr>
<tr>
<td>Median k\text{trans}</td>
<td>1.32</td>
<td>1.01, 1.72</td>
</tr>
<tr>
<td>nRCBV</td>
<td>1.11</td>
<td>0.90, 1.37</td>
</tr>
<tr>
<td>nCBF</td>
<td>1.07</td>
<td>0.88, 1.29</td>
</tr>
</tbody>
</table>
Imaging and Therapeutic Response

- Clinical scenarios and questions
- Cancer biomarker approaches for functional and molecular imaging
 - Prognosis
 - Prediction
 - Response
 - Biologic response
Outcomes for Cancer Imaging: Prediction

- Predictor of response to specific therapy
 - Positive - predicts who will respond
 - Negative - predicts who will not respond
Predictive Assays

- Examples of in vitro assay
 - ER - Endocrine therapy for breast cancer
 - TS - 5-FU for colon cancer
 - HER2 - Trastuzumab for breast cancer
Targeted Breast Cancer Therapy: The Estrogen Receptor (ER) and Endocrine Treatment

(Johnson and Dowsett, Nar Rev Cancer 3:821, 2002)
18F-Fluoroestradiol (FES): PET Estrogen Receptor (ER) Imaging

Provides a Quantitative Estimate of ER Expression

--

vs Radioligand Binding

![Graph showing Tumor Uptake vs ER Concentration](image)

- **ER Concentration (fmoles/mg protein)**
- **Tumor Uptake (% ID/mL x 10^-4)**

(Mintun, Radiology 169:45, 1988)

--

vs IHC

![Graph showing PV SUV vs IHC index](image)

- **PV SUV**
- **IHC index**

--

(FGFluoroestradiol (FES): PET Estrogen Receptor (ER) Imaging)

FES Uptake Predicts Breast Cancer Response to Hormonal Therapy

Example 1
- Recurrent sternal lesion
- ER+ primary
- Recurrent Dz strongly FES+

Example 2
- Newly Dx’d met breast CA
- ER+ primary
- FES-negative bone mets

Pre-Rx

Post-Rx

Excellent response after 6 wks Letrozole

No response to several different hormonal Rx’s

University of Washington

(Linden, J Clin Onc, 2006)
ECOG-ACRIN Biomarker Trial of FES PET: EAI142

Dehdashti & Linden

MBC from ER+ Primary

• First line therapy
• Stand-alone imaging trial:
 – Clinical indication for endocrine therapy
 – Standard Rx allowed (AI, FUL, TAM)
 – Allow measurable and non-measurable disease

Endocrine Therapy

Biopsy

Response
PFS
3, 6 month assessment

Primary Aim

Validation Aim

FES PET

FDG PET

Group Meeting • Nov 14-16, 2013 21
Cancer Markers: Prognostic, Predictive, or Both?

- ERG ER+
- PFS
- ER-directed therapy
- Non-targeted therapy
- No therapy
- ER- ER+
Imaging and Therapeutic Response

- Clinical scenarios and questions
- Cancer biomarker approaches for functional and molecular imaging
 - Prognosis
 - Prediction
 - Response
 - Biologic response
- Future directions
Outcomes for Cancer Imaging: Response

- Accuracy of response assessment
 - Response or not - R versus NR
 - Degree of response – residual dz versus CR
- Surrogate outcome measure
 - Predictor of DFS, OS
Study Design for:

Measuring Response

Pre-Rx Therapy Response

PreGRx PostGRx

Relapse & Survival

Difference

Outcomes:

Sens, Spec, ROC for Response

Predictor of TTP and Survival
Functional and Molecular Imaging Response
Neo-Adjuvant Therapy of Locally Advanced Breast Cancer (LABC)
FDG PET to Monitor Breast Cancer Response to Therapy
Wahl, J Clin Oncol 11:2101, 1993

Pre-Rx → Chemotherapy → Surgery (Path Response)

Baseline
Mid-Rx

P < .001 P = NS

(N=11)

FDG SUV

Responders Non-Responders

Day 0 Day 63
Change in MIBI Uptake Predicts Response

Pathologic Complete Response

Uptake vs Response

Progressive Disease

ROC for CR versus PR

\[A_z = 0.96 \]

\[(A_z \text{ for size chng } = 0.77) \]

(Mankoff, Cancer, 1998)
Functional Imaging Predicts Outcome

99mTc-MIBI Serial Imaging

Change in Uptake Predicts Response

Residual Uptake Predicts Outcome

\begin{itemize}
\item Disease-Free Survival
\item Overall Survival
\end{itemize}

\begin{itemize}
\item Low MIBI Uptake
\item High MIBI Uptake
\end{itemize}

\begin{itemize}
\item ($P < .001$)
\item ($P < .01$)
\end{itemize}

(Dunnwald, Cancer, 103: 680, 2005)
Biologic Events in Response to Successful Cancer Therapy

Rationale for Measuring Early Response by Cell Proliferation Imaging

Rx

↓ Cellular Proliferation or ↑ Cell Death

↓ DNA Synthesis

↓ Viable Cell Number

↓ Tumor size
Early Response Measured by 18F-fluorothymidine (FLT) PET

Breast CA, ChemoRx
(Kenny, EJNMMI 34:1339, 2007)

Lung CA, Genfitinib Rx
(Sohn, Clin Cancer Res 14: 7423, 2008)
ACRIN 6688 Study Outline

Establish Eligibility

- Baseline organ function
- Pathologically confirmed disease
- Determine primary systemic Rx

Obtain pre-treatment proliferative Indices

Ki-67, mitotic index on bx sample or re-biopsy (if available)

* Baseline Imaging

18FLT PET/CT (FLT-1)

Chemotherapy cycle 1

18FLT PET/CT (FLT-2)

* Early therapy Imaging

Chemotherapy last cycle

18FLT PET/CT (FLT-3)

Post-therapy Imaging

Surgical Resection

Obtain post-treatment proliferative Indices

- Pathologic response,
- Ki-67, mitotic index, surg. specimens
ACRIN 6688: FLT PET to Measure Early Breast Cancer Response (PI: Lale Kostakoglu)

Best ΔSUV$_{\text{max}}$ cut-off for predicting pCR = -51% (sensitivity 56%; specificity 79%).

(Kostakoglu, J Nucl Med, 2015, epub)
Imaging and Therapeutic Response

- Clinical scenarios and questions
- Cancer biomarker approaches for functional and molecular imaging
 - Prognosis
 - Prediction
 - Response
 - Biologic response
- Future directions
Outcomes for Cancer Imaging: Biologic Response

• Can functional/molecular response better predict outcome?
 • Predict DFS, OS, etc
 • And what are the biologic insights
• Surrogate outcome measure?
FDG PET Is Sensitive for HL and High-Grade NHL, and Its Response to Treatment

Hodgkin’s Lymphoma (HL)
Pre- and Post-ABVD
NHL, Partial Metabolic Response (Residual Tumor)

Pre- | Post-
Advanced Stage HL

- 260 HL patients, prospective
 - unfavorable stage IIA 26%
 - stage IIB 27%
 - stage III-IVB 47%
- End-point: 2yr PFS, med f/u 2.2 y
- 79% CR; 16% prog <6mo; 4% relapse
 - PPV 86%
 - NPV 95%
 - Sens and spec: 81% and 97%
- 2-yr PFS for PET2- vs PET2+
 95% vs 13%,
 Positive PET definition uptake > MBP

(courtesy of Lale Kostakoglu)

PET-2 was significant overshadowing the prognostic value of IPS

TABLE I.—Prognostic value of end-treatment 18F-FDG PET for Aggressive NHL and HL.

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>Patients (n°)</th>
<th>DISEASE</th>
<th>NOTES</th>
<th>FOLLOW-UP (months)</th>
<th>PFS PET+ vs PET−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinzani 1999</td>
<td>44</td>
<td>LH/LNH</td>
<td>Abdominal mass in all</td>
<td>20</td>
<td>1 yr: 15% vs 95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 yr: 0% vs 95%</td>
</tr>
<tr>
<td>Jerusalem 1999</td>
<td>54</td>
<td>LH/LNH</td>
<td>RM in 24</td>
<td>21</td>
<td>1 yr: 0% vs 86%</td>
</tr>
<tr>
<td>Maisey 2000</td>
<td>24</td>
<td>LH/LNH</td>
<td>RM in 24</td>
<td>29</td>
<td>56% vs 73%</td>
</tr>
<tr>
<td>Mikhacel 2000</td>
<td>45</td>
<td>Aggressive LNH</td>
<td>RM in 17</td>
<td>30</td>
<td>1 yr: 0% vs 83%</td>
</tr>
<tr>
<td>Spaepen 2000</td>
<td>93</td>
<td>Aggressive LNH</td>
<td>RM in 24</td>
<td>22</td>
<td>2 yr: 4% vs 85%</td>
</tr>
<tr>
<td>Juweid 2002</td>
<td>38</td>
<td>Aggressive LNH</td>
<td>-</td>
<td>15.5</td>
<td>1 yr: 8% vs 88%</td>
</tr>
<tr>
<td>de Wit 2001</td>
<td>37</td>
<td>LH</td>
<td>RM in 37</td>
<td>25.6</td>
<td>54% vs 96%</td>
</tr>
<tr>
<td>Weihrauch 2001</td>
<td>28</td>
<td>LH</td>
<td>RM in 28</td>
<td>28</td>
<td>1 yr: 40% vs 95%</td>
</tr>
<tr>
<td>Spaepen 2001</td>
<td>60</td>
<td>LH</td>
<td>RM in 43</td>
<td>31</td>
<td>2 yr: 4% vs 85%</td>
</tr>
<tr>
<td>Mikhacel 2002</td>
<td>65</td>
<td>LH</td>
<td>-</td>
<td>36</td>
<td>1 yr: 0% vs 93%</td>
</tr>
</tbody>
</table>

Abbreviations: RM: residual mass; PET+: positive; PET−: negative
Early Interim FDG-PET and Prognosis

(a) FDG-PET after two cycles

- FDG-PET negative
 - 61 Patients, prog=3
 - 2-year PFS 96%

- FDG-PET positive
 - 16 Patients, prog=11
 - 2-year PFS 0%

P < 0.0001

(b) CT after two cycles

- Unsatisfactory remission
 - 2 Patients, prog=0
 - 2-year PFS 100%

- Satisfactory remission
 - 62 Patients, prog=11
 - 2-year PFS 82%

P = 0.554

(courtesy of A Shields, Karmanos Cancer Center) M Hutchings, Blood, 2006
Lymphoma Guidelines 2014: The Lugano Criteria
Response Assessment
Cheson, J Clin Oncol 32: 3059, 2014

Table 1. Revised Criteria for Response Assessment

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>CR- and PR-Based Criteria</th>
</tr>
</thead>
</table>
| Complete lymph nodes and extranodal disease | Complete metabolic response
 Score: 4 or 5: complete response
 Score: 2 or 3: partial response
 Score: 0 or 1: no response

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>CR- and PR-Based Criteria</th>
</tr>
</thead>
</table>
| New lesions | Absent
| Organ enlargement | Regression to normal
| Bladder | Yes
| Bone marrow | No evidence of FDG and disease in marrow
| Lymph nodes and extranodal disease | Complete metabolic response
 Score: 4 or 5: complete response
 Score: 2 or 3: partial response
 Score: 0 or 1: no response

Table 3. Revised Criteria for Response Assessment (continued)

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>CR- and PR-Based Criteria</th>
</tr>
</thead>
</table>
| Progression disease | Progressive disease requires at least of the following
 FDG progression
 New lesion(s) 4 or 5
 Increase in abnormal lesion
 Increase in metastasis

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>CR- and PR-Based Criteria</th>
</tr>
</thead>
</table>
| Stable disease | Complete metabolic response
 Score: 4 or 5: complete response
 Score: 2 or 3: partial response
 Score: 0 or 1: no response

Oy!!
Imaging Biomarker in Cancer Trials: Integrated vs Integral Markers

ECOG 2410 Trial in bulky early stage HL (n=144)

FDG-PET after 2x ABVD

PET-

ABVD 4 more cycles (total of 6 cycles)

PET-

FDG-PET/CT

PET+

PET+

PET-

PET+

Follow up

Biopsy+ off

Biopsy-
Imaging as a Biomarker: Summary

• Imaging to guide treatment – imaging as a disease biomarker
 • Prognosis – How aggressive is the dz?
 • Prediction - Will the Rx work?
 • Response - Is the Rx working?
• Biologic Response
 • Can response predict survival?
 • Can we use insights from imaging to adapt therapy?