Panel: Image Interpretation

Challenges and Approaches to Standardization

Lawrence Schwartz, MD

Department of Radiology Columbia Presbyterian Medical Center LSCHWARTZ@COLUMBIA.EDU

Imaging Committee Chair for CALGB

Wright Center of Innovation in Biomedical Imaging

Imaging Modalities Used in Clinical Trials Image Interpretation Standardization

CT

MRI

PET

- The need for standardization varies by imaging modality, technique and potentially therapeutic option
- The need and degree of standardization is clearly related to the magnitude of the therapeutic effect which is to be measured

The Need for Interpretation Standardization CT in Colorectal Cancer

pre-Therapy

post-Therapy

The Need for Interpretation Standardization CT in Lung Cancer

The Need for Interpretation Standardization PET in Lymphoma Cancer

The Need for Interpretation Standardization What are sources of variability?

- Target lesion selection
- Image acquisition protocols
- Measurement of target lesions
- Interpretation of "clear unequivocal progression of non-target disease"
- Identification of new lesions
- Primary tumor type

Categories of Lesions in RECIST

Target

Non Target

New Lesion

Table of Response Assessment RECIST

Overall responses for all possible combinations

Target	Nontarget	New	Overall
lesions	lesions	lesions	/ response \
CR	CR	No	CR
CR	Incomplete response/SD	No	PR
PR	Non-PD	No	PR
SD	Non-PD	No	SD
PD	Any	Yes or No	PD
Any	PD	Yes or No	PD
Any	Any	Yes	PD

The Need for Interpretation Standardization Variability - Target Lesion Selection

Γ				Response assessment				Response Rank			
	Patient No.	Total No . of lesions	No. of groupings	CR	PR	SD	PD	1	2	3	No. of response categories
-	1	7	21	0	0	0	21	1	0	0	1
- >	2	16	4368	0	0	3697	671	0.85	0.15	0	2
\rightarrow	3	10	252	0	100	152	0	0.6	0.4	0	2
>	4	10	252	1	232	19	0	0.98	0.08	0.004	3
	5	12	792	0	0	31	761	0.96	0.04	0	2
- >	6	15	3003	0	0	3003	O	1	0	0	1

Calculated tumor response assessments, response ranks, and response categories for one patient, analyzing 10 lesions with RECIST criteria

The Need for Interpretation Standardization Target Lesion Selection

The Need for Interpretation Standardization Image Acquisition - Contrast Administration

The Need for Interpretation Standardization CT Contrast Administration

The Need for Interpretation Standardization CT Contrast Administration

Response = PR

The Need for Interpretation Standardization CT Contrast Administration

Response = PD

Modality Acquisition and Measurement of target lesions

Uni-dimension (mm): 27.6
Bi-dimension (mm²): 552
Volume (mm³): 4957.1

Post-walking 27.8 597.7 4852.3 Variation 0.7% 7.9% 2.1%

Zhao Radiolo

Modality Acquisition and Measurement of target lesions

	Concordance correlation coefficient			Mean % relative difference	95% Limits of agreement
	ρ_c		95% CI		
Uni- dimensional	1.00	(1	.00, 1.00)	-0.6%	-7.3 %, 6.2 %
Bi- dimensional	1.00	(0	.99, 1.00)	1.1%	-17.6 %, 19.8 %
Volume	1.00	(1	.00, 1.00)	0.7%	-12.1 %, 13.4 %

- There is no clear definition or interpretation of "clear unequivocal progression of non-target disease" in RECIST
 - This may result in variable interpretations impacting TTP image analysis especially in diseases with more extensive non target component

Sources of Variability Identification of new lesions

Frequency of pulmonary nodules detection

No. of Nodules	Observer	A	Observer B		
	1.25 mm	5 mm	1.25 mm	5 mm	
2-5 mm	28	13	36	22	
6-10 mm	18	14	20	18	
11-30 mm	9	9	9	9	
Total	55	36	65	49	

Impact on lung lesion detection for time to progression analysis

What is an "optimal" or "acceptable" Agreement among observers?

- Consideration of the Primary Tumor and type of metastatic disease
- Mesothelioma
- Ovarian
- Pancreas
- Gastric

- Colorectal
- o Renal
- Breast

o Others – Prostate, lymphoma

A single, standard agreement/adjudication rate would not reflect the variability in assessments across clinical trials

Acceptable Adjudication Rate? Number of Modalities Assessed

- Case Study 1
 - Nonsmall Cell LungCancer
 - CT Chest/Abdomen

- o Case Study 2
 - Ovarian Cancer
 - CT Chest /Abdomen / Pelvis
 - FDG-PET
 - o CA-125
 - QOL assessment
 - Paracentesis for ascites

A single, standard agreement/adjudication rate would not reflect the variability in assessments across clinical trials

Acceptable Agreement Rate? Each Adjudicated Case may not be Equal

Case 1

Case 2

Waterfall Plot / Analysis May mandate even greater agreement....

CALGB US Cooperative Groups

- Cooperative groups are consortia of institutions that conduct research in cancer treatment, prevention, biology and health outcomes
- o Founded 1956
- The unit of membership is the institution; 28 main members,
 14 CCOPs, 225 affiliates
- (Headquarters): University of Chicago; Statistical Center: Duke University

Treatment (Intervention) Trials @ CALGB

- o Breast
- o Lymphoma
- o GI
 - Colorectal, esophagus, rectal
- o GU
 - Kidney, bladder, prostate
- o Pathology
- o Imaging

- Phase I or limited accessn = 3
- Phase II n = 22
- \overline{o} Phase III n = 18
- Registration directed (prospective) n = 4
- Several retrospective registration directed trials

Setting Standards of Care

- FDA approvals based on cooperative group data:
 - -cisplatin for NSCLC
 - -paclitaxel for ovarian and NSCLC
 - -paclitaxel as adjuvant therapy for breast cancer
 - -tamoxifen for breast cancer prevention
 - -interferon for high risk melanoma
 - -5-azacytidine for MDS
 - -oxaliplatin for met. CRC
 - -bevacizumab in 2nd line therapy for mCRC

New CALGB Trials Utilizing Imaging

Protocol	Study Chair	Imaging Co-Chair
CALGB40502	Hope Rugo, M.D.	Deanna L. Kroetz, Ph.D.
CALGB40503	Maura Dickler, M.D.	Federico Innocenti, M.D.
CALGB50303	Wyndham H. Wilson, M.D., Ph.D. Andrew D. Zelentz, M.D., Ph.D.	Heiko Schoder, M.D.
CALGB50701	Barbara Grant, M.D.	Lale Kostakoglu, M.D.
CALGB80302	David H. Ilson, M.D., Ph.D.	Nathan Hall, M.D., Ph.D.
CALGB140503	Nasser Altorki, M.D.	Ernest Scalzetti, M.D.
CALGB80802	Ghassan Abou-Alfa, M.D.	Lawrence Schwartz, M.D.
SWOG0816	Oliver W. Press, M.D., Ph.D.,	Heiko Schoder, M.D.
CALGB30803	Sarita Dubey, M.D.	Ernest Scalzetti, M.D
CALGB50604	David J. Straus, M.D.	Lale Kostakoglu, M.D.
CALGB50801	Ann S. LaCasce, M.D.	Lale Kostakoglu, M.D.
CALGB30901	Arkadiusz Z. Dudek M.D., Ph.D.	Ernest Scalzetti, M.D
CALGB50602	Sonali M. Smith, M.D.	Heiko Schoder, M.D.
CALGB50201	Thomas Shea, M.D.	Lawrence Schwartz, M.D.
CALGB50203	David J. Straus, M.D.	Malik Juweid, M.D.
CALGB50404	Barbara Grant, M.D.	Malik Juweid, M.D.

Study Number	Study Name	pts accural	Total Studies Received
CALGB140503	A Phase III Randomized Trial of Lobectomy versus Sublobar Resection for Small (= 2 cm) Peripheral Non-small Cell Lung Cancer</td <td>99</td> <td>241</td>	99	241
CALGB80302	A Phase II Trial of Preoperative Irinotecan, Cisplatin and Radiation in Esophageal Cancer	45	137
CALGB50701	A Phase II Trial of Extended Induction Epratuzumab (Anti-CD22 Monoclonal Antibody) (CALGB IND #101241) Plus Rituximab in Previously Untreated Follicular Non-Hodgkin's Lymphoma (NHL)	61	104
CALGB50602	A Phase II Study of Galiximab (Anti-CD80) for Patients with Relapsed/Refractory Hodgkin Lymphoma	14	25
CALGB50303	Phase III Randomized Study of R-CHOP v. Dose-Adjusted EPOCH-R with Molecular Profiling in Untreated De Novo Diffuse Large B-Cell Lymphomas	53	151
CALGB50203	Phase II Trial of Doxorubicin, Vinblastine and Gemcitabine (AVG) Chemotherapy for Non-Bulky Stage I and II Hodgkin Lymphoma	105	409
CALGB40503	Endocrine Therapy in Combination with Anti-VEGF Therapy: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Endocrine Therapy Alone or Endocrine Therapy Plus Bevacizumab (NSC 704865: IND 7921) for Women with Hormone Receptor Positve Advanced Breast Cancer	57	133
CALGB40502	A Randomized Phase III Trial of Weekly Paclitaxel Compared to Weekly Nanoparticle Albumin Bound NAB-Paclitaxel or Ixabepelone Combined with Bevacizumab as First-Line Therapy for Locally Recurrent or Metastatic Breast Cancer	112	285
CALGB50201	A Phase II Study to Evalutae the Safety and Efficacy of Zevalin (IND # BB IND 11023) Theraputic Regimen in Patients with Transformed CD20+ B-cell Non-Hodgkin's Lymphoma	7	24
SWOG0816	A PHASE II TRIAL OF RESPONSE-ADAPTED THERAPY OF STAGE III-IV HODGKIN LYMPHOMA USING EARLY INTERIMPDG-PET IMAGING	30	42

CALGB Imaging Core Lab Overview Procedures and Services

Jun Zhang, PhD; Nathan C. Hall, MD, PhD; Michael V. Knopp, MD, PhD The Ohio State University, Columbus

Imaging Core Service Clinical Trials Quality Control

- Imaging Core Facilities
- Vendor Imaging Systems
- Vendor Workstations
- Dedicated Workstations

- Director
- Project Leader
- Project Manager
- Dedicated Individuals

- •Lab meetings
- Training sessions
- •Site credentialing
- •Compliance monitoring •Central review

•Data management

Post-processing

- •Protocol Amendment
 - •W
- •Site Technical Manual
- •Trial E-mail

- Data receipt confirmation
- Data quality check report
- DCIOM De-identification
- ICR database
- Site education/training/approval
- Overall communication
- Regular trial report

Quality Control Workflow in Clinical Cancer Trials

Semi-automatic PET/CT Image QC Program

Import PET	DICOM Info		
Patient Name	1111111		
Patient ID	31288-44424		
Patient Weight	61.00		
Patient Height	1.61		
Acquisition Date	05-16-2008		
Institution			
City			
Deptartment			
Dose Injected	434.49		
Dose Unit	MBq		
Time Of Injection	08:45:00		
Emission Start Time	09:43:00		
Image Size	128/128		
Image Resolution	4.25/4.25		
Slice Thickness	3.27		
Implementation	nmdpet_stud_anon		
Manufacture	GE MEDICAL SYSTEM		
Model Of Scanner	Discovery ST 🗼		

Review Comments:			
	Export QC Report	Exit	

Centralized Data with Remote Review

- Vendor Advanced Workstation based
- Extended Brilliance Workspace
- Multi-Modality Workplace
- Centralized Data Review
- Data in one system
- Multiple reviewers
- Easy and Real-Time Access Internet

Imaging Adaptive Trials

FDG PET/CT after induction chemo can identify patients who benefit from changing chemo resulting in improved response rates and PFS

Real-time Adaptive Trial Support -

- 1. New studies received? Monitor trial Email and Workstation for the Review
- 2. New Pt registration? Monitor trial email and remind sites of data submission
- 3. Data Receipt Confirmation within 24 hours upon data receipt
- 4. Quality Check Report notification within 48 hours for 'baseline' and 'final', 24 hours for 'interim'
- 5. For 'non-compliant' studies, contact imaging committee for a final decision.
- 6. DICOM image De-identification
- 7. Remote Review Scheduling with Central Readers
- 8. Prepare the review form for readers
- 9. Real-time Data Review with reader(s)
- 10. Request for review results from readers
- 11. Notification of central review results to sites and Central Office

ACADEMIC EXPERT PANEL
REVIEW
72 HOUR TURN AROUND FROM
ACQUISITION TO INTERPRETATION

Panel: Image Interpretation Challenges and Approaches to Standardization

- Interpretation by its nature is both quantitative as well qualitative
 - Critical is standardization of acquisition, analysis and results reporting
 - Expert interpretation
- Training, education, experience imaging and therapeutic specific
- The need for standardization varies by imaging modality and potentially therapeutic option
- The need and degree of standardization is clearly related to the magnitude of the therapeutic effect which is to be measured